FATE项目中PSI求交协议的通信量测量与分析
背景介绍
隐私集合求交(Private Set Intersection, PSI)是联邦学习框架FATE中的一项核心技术,它允许参与方在不泄露各自原始数据的情况下计算数据集的交集。在FATE 1.7.2版本中,主要提供了两种PSI实现方案:基于RSA的方案和基于Diffie-Hellman(DH)的方案。虽然官方文档提供了这两种方案的运行时间数据,但关于通信量的具体测量方法却鲜有提及。
通信量测量方法
在分布式环境下,准确测量组件间的通信量对于系统性能优化和资源规划至关重要。针对FATE项目中的PSI求交协议,我们可以采用Linux系统的网络流量统计工具进行精确的流量统计。
测量原理
网络流量统计工具是Linux内核提供的网络管理工具,它不仅可以用于网络安全防护,还能记录通过特定规则匹配的网络数据包信息。通过配置适当的规则,我们可以捕获FATE组件间通信的详细数据,包括数据包大小、传输方向等关键信息。
具体实施步骤
- 配置流量统计规则:针对PSI求交任务,设置捕获特定目标端口(默认为9370)的TCP流量规则,并添加识别前缀以便后续分析。
sudo iptables -I OUTPUT -p tcp -d 目标IP --dport 9370 -j LOG --log-prefix "通信标识前缀"
-
执行PSI求交任务:在规则生效后,提交不同规模的PSI求交任务,包括DH方案和RSA方案。
-
分析日志数据:任务完成后,使用grep和awk工具从系统日志中提取并统计相关通信量数据。
grep "通信标识前缀" /var/log/messages | awk '{统计处理逻辑}'
- 清理流量统计规则:测量完成后,及时清除临时规则以避免影响系统正常运行。
sudo iptables -F OUTPUT
测量结果分析
通过对不同规模数据集(2^12到2^18)的测试,我们获得了DH和RSA两种PSI方案的通信量数据(单位:MB):
| 协议类型 | 2^12 | 2^14 | 2^16 | 2^18 |
|---|---|---|---|---|
| DH方案 | 2.36 | 9.36 | 37.27 | 149.38 |
| RSA方案 | 2.47 | 9.81 | 39.15 | 156.50 |
从数据可以看出:
- 两种方案的通信量都随着数据集规模的增大而线性增长,符合理论预期。
- 在相同数据集规模下,RSA方案的通信量略高于DH方案,差异约为4-5%。
- 通信量的增长趋势与数据集规模的增长倍数基本保持一致,说明两种方案都具有良好的可扩展性。
技术要点说明
-
测量环境选择:需要注意的是,在FATE的standalone模式下无法准确测量通信量,必须使用集群部署模式(如Eggroll)才能获得真实数据。
-
测量方向:上述方法测量的是host向guest单向发送的数据量,实际完整的PSI过程还包括反向通信,总通信量应为双向之和。
-
数据包处理:网络流量统计记录的是TCP层的数据包信息,包含了协议头等额外开销,与纯应用层数据量略有差异。
-
性能权衡:虽然RSA方案的通信量略高,但其在计算复杂度或安全性方面可能有其他优势,实际选择应综合考虑多方面因素。
实际应用建议
-
在大规模数据集场景下,通信量可能成为系统瓶颈,建议根据实测数据提前规划网络带宽。
-
对于网络条件受限的环境,可以考虑优先选择DH方案以减少通信开销。
-
在性能测试时,应同时考虑通信量和计算时间两个维度,进行全面评估。
-
对于超大规模数据集,可以考虑采用抽样测量方法,先估算通信需求再决定具体实施方案。
通过这种系统化的测量方法,开发者可以更准确地评估PSI求交协议在实际部署中的资源需求,为系统优化和参数调优提供数据支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00