VLMEvalKit项目MVBench评测问题分析与修复方案
问题背景
在VLMEvalKit项目中,MVBench作为重要的多模态视频理解评测基准,近期出现了两个关键性问题影响了评测流程的正常运行。这些问题主要涉及数据缺失导致的评测中断以及评测结果处理不当导致的分数计算错误。
问题一:视频数据缺失导致评测中断
MVBench部分视频数据由于各种原因被删除,当评测流程尝试处理这些缺失的视频时,系统无法生成对应的推理结果,最终导致评测流程报错中断。这种情况在分布式评测环境中尤为常见,因为不同节点可能下载的数据完整性不一致。
技术分析: 视频数据缺失问题本质上属于数据完整性校验范畴。在构建评测流水线时,应该增加数据存在性检查机制,对于缺失的数据应当跳过处理而非直接报错中断流程。这种设计能够提高评测系统的鲁棒性,特别是在处理大规模多模态数据集时。
问题二:评测结果处理不当
在使用evaluate方法进行评测时,系统对模型生成的推理结果没有进行合理的预处理,特别是没有去除字符串中的空格字符。这种疏忽会导致字符串匹配不准确,进而影响最终的评测分数计算。
技术影响: 空格处理看似是小问题,但在实际评测中可能造成显著影响。例如,模型生成答案"cat"与标准答案" cat "(带空格)会被判定为不匹配,导致准确率计算错误。这种问题在严格依赖字符串精确匹配的评测场景中尤为关键。
解决方案
针对上述两个问题,技术社区提出了相应的修复方案:
-
数据缺失处理优化:
- 修改tsv文件构建逻辑,跳过缺失的视频数据而非报错
- 增加数据完整性检查机制
- 记录跳过数据的信息供后续分析
-
评测结果预处理:
- 在评估前对所有推理结果执行trim操作去除首尾空格
- 统一字符串比较前的规范化处理
- 增加预处理日志记录
实现建议: 修复方案应保持向后兼容性,同时提供配置选项允许用户选择严格模式(遇到缺失数据报错)或宽容模式(跳过缺失数据)。对于关键评测场景,建议记录详细的数据缺失情况报告。
注意事项
虽然跳过缺失数据可以保证评测流程继续执行,但开发者需要注意:
- 数据不完整会影响评测结果的代表性
- 建议记录详细的数据缺失统计信息
- 对于正式评测,应确保数据完整性后再执行
总结
VLMEvalKit作为多模态评测工具包,其稳定性和准确性对模型评估至关重要。本次修复的两个问题分别从数据鲁棒性和评测准确性两个维度提升了系统的可靠性。开发者在类似的多模态评测系统实现中,应当特别注意数据完整性和字符串处理这些基础但关键的技术细节。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00