VLMEvalKit项目MVBench评测问题分析与修复方案
问题背景
在VLMEvalKit项目中,MVBench作为重要的多模态视频理解评测基准,近期出现了两个关键性问题影响了评测流程的正常运行。这些问题主要涉及数据缺失导致的评测中断以及评测结果处理不当导致的分数计算错误。
问题一:视频数据缺失导致评测中断
MVBench部分视频数据由于各种原因被删除,当评测流程尝试处理这些缺失的视频时,系统无法生成对应的推理结果,最终导致评测流程报错中断。这种情况在分布式评测环境中尤为常见,因为不同节点可能下载的数据完整性不一致。
技术分析: 视频数据缺失问题本质上属于数据完整性校验范畴。在构建评测流水线时,应该增加数据存在性检查机制,对于缺失的数据应当跳过处理而非直接报错中断流程。这种设计能够提高评测系统的鲁棒性,特别是在处理大规模多模态数据集时。
问题二:评测结果处理不当
在使用evaluate方法进行评测时,系统对模型生成的推理结果没有进行合理的预处理,特别是没有去除字符串中的空格字符。这种疏忽会导致字符串匹配不准确,进而影响最终的评测分数计算。
技术影响: 空格处理看似是小问题,但在实际评测中可能造成显著影响。例如,模型生成答案"cat"与标准答案" cat "(带空格)会被判定为不匹配,导致准确率计算错误。这种问题在严格依赖字符串精确匹配的评测场景中尤为关键。
解决方案
针对上述两个问题,技术社区提出了相应的修复方案:
-
数据缺失处理优化:
- 修改tsv文件构建逻辑,跳过缺失的视频数据而非报错
- 增加数据完整性检查机制
- 记录跳过数据的信息供后续分析
-
评测结果预处理:
- 在评估前对所有推理结果执行trim操作去除首尾空格
- 统一字符串比较前的规范化处理
- 增加预处理日志记录
实现建议: 修复方案应保持向后兼容性,同时提供配置选项允许用户选择严格模式(遇到缺失数据报错)或宽容模式(跳过缺失数据)。对于关键评测场景,建议记录详细的数据缺失情况报告。
注意事项
虽然跳过缺失数据可以保证评测流程继续执行,但开发者需要注意:
- 数据不完整会影响评测结果的代表性
- 建议记录详细的数据缺失统计信息
- 对于正式评测,应确保数据完整性后再执行
总结
VLMEvalKit作为多模态评测工具包,其稳定性和准确性对模型评估至关重要。本次修复的两个问题分别从数据鲁棒性和评测准确性两个维度提升了系统的可靠性。开发者在类似的多模态评测系统实现中,应当特别注意数据完整性和字符串处理这些基础但关键的技术细节。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00