使用Supervision库处理HuggingFace目标检测模型输出的注意事项
2025-05-07 16:13:58作者:柯茵沙
在计算机视觉领域,HuggingFace的Transformers库和Roboflow的Supervision库是两个非常实用的工具。前者提供了大量预训练模型,后者则简化了计算机视觉任务的后处理流程。然而,在使用这两个库协同工作时,开发者可能会遇到一些兼容性问题。
问题背景
当使用HuggingFace的pipeline接口进行目标检测时,返回的结果格式与Supervision库的Detections.from_transformers方法期望的格式不匹配。具体表现为:
pipeline返回的是一个包含多个检测结果的列表- 每个检测结果是一个字典,包含
box、score和label等键 - 而
Detections.from_transformers方法期望的是一个包含所有检测结果的字典,其中每个键对应一个包含所有检测值的列表
正确的使用方式
要正确地将HuggingFace模型输出转换为Supervision的Detections对象,开发者应该避免使用pipeline接口,而是直接使用模型进行推理。以下是推荐的工作流程:
- 首先使用
AutoImageProcessor处理输入图像 - 然后将处理后的输入传递给模型
- 最后使用
post_process_object_detection方法处理模型输出
with torch.no_grad():
# 预处理图像
inputs = image_processor(images=image, return_tensors="pt")
# 模型推理
outputs = model(**inputs)
# 准备目标尺寸
target_sizes = torch.tensor([image.size[::-1]])
# 后处理检测结果
results = image_processor.post_process_object_detection(
outputs,
threshold=0.5,
target_sizes=target_sizes
)[0]
技术细节解析
这种差异源于两种不同的设计理念:
- HuggingFace的
pipeline接口旨在提供最简单易用的API,因此返回的结果格式更直观 - Supervision库则针对性能进行了优化,期望批量处理的数据格式
post_process_object_detection方法返回的格式与Supervision兼容,因为它将所有检测框、分数和类别ID分别组织成单独的数组,而不是每个检测结果一个字典。
实际应用建议
对于需要频繁使用这两个库的开发人员,建议:
- 建立自己的工具函数来处理格式转换
- 在项目文档中明确记录这种兼容性要求
- 考虑封装一个适配器类来统一接口
理解这种格式差异有助于开发者更高效地使用这两个强大的工具库,构建更稳定的计算机视觉应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19