首页
/ 01-ai/Yi项目微调过程中Loss Scale问题的分析与解决

01-ai/Yi项目微调过程中Loss Scale问题的分析与解决

2025-05-28 15:04:52作者:郦嵘贵Just

问题背景

在使用01-ai/Yi项目进行模型微调时,部分用户遇到了"loss scale overflow"问题,特别是在Yi-6B基础模型上表现尤为明显,而Yi-6B-Chat版本则相对稳定。该问题表现为训练过程中不断出现loss scale溢出的警告信息,最终导致训练失败并报错"Current loss scale already at minimum - cannot decrease scale anymore. Exiting run"。

技术原理分析

这个问题本质上与混合精度训练中的梯度缩放机制有关。在混合精度训练中,为了保持数值稳定性,通常会使用动态loss scaling技术。当梯度值过大时,系统会自动降低loss scale;反之则会适当提高。当梯度持续过大时,loss scale会不断降低直至达到预设的最小值,此时系统会判定训练无法继续而终止。

问题根源探究

经过深入分析,发现该问题的核心原因在于Yi-6B基础模型的embedding层中某些特殊token(如<|im_start|>和<|im_end|>)的向量初始化值异常小。这些token在基础模型训练阶段未被充分训练,导致其对应的embedding向量数值范围与其他token差异较大。

在微调过程中,这些异常小的向量值会导致梯度计算出现数值不稳定,进而引发loss scale的持续降低。相比之下,Chat版本模型由于已经经过对话数据的微调,这些特殊token的embedding向量已经得到了适当调整,因此不会出现同样的问题。

解决方案

针对这一问题,可以采取以下几种解决方案:

  1. 重新初始化特殊token的embedding向量:手动调整这些特殊token对应的embedding向量值,使其与其他token保持相近的数值范围。

  2. 禁用混合精度训练:在DeepSpeed配置中将fp16设置为False,改用fp32精度进行训练。虽然这会增加显存消耗和计算开销,但能有效避免数值不稳定问题。

  3. 调整训练参数:适当降低学习率或使用梯度裁剪技术,控制梯度更新的幅度。

  4. 使用预训练的Chat模型:如果任务允许,直接使用已经调优过的Chat版本模型进行微调。

实践建议

对于使用V100等计算硬件的用户,如果显存允许,建议优先考虑方案2(禁用混合精度)。虽然这会降低训练速度,但能保证训练稳定性。如果必须使用混合精度训练,则应仔细检查并调整特殊token的embedding初始化值。

此外,在模型微调前,建议先对embedding层的数值分布进行简单分析,特别关注那些新增或特殊用途的token,确保它们的初始化值处于合理范围内。这可以有效预防类似问题的发生。

总结

数值稳定性是深度学习训练中的关键问题,特别是在大模型微调场景下。通过理解loss scale机制的工作原理,并针对性地调整模型参数和训练配置,可以有效解决这类问题,确保训练过程的顺利进行。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
kernelkernel
deepin linux kernel
C
22
5
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K