Seurat中使用Harmony进行批次效应校正的最佳实践
2025-07-01 21:20:14作者:吴年前Myrtle
概述
在单细胞RNA测序数据分析中,批次效应是一个常见的技术变异来源。Seurat作为单细胞分析的主流工具,提供了多种批次效应校正方法,其中Harmony因其高效和易用性而广受欢迎。本文将详细介绍在Seurat工作流中整合使用Harmony进行数据整合的方法和注意事项。
Harmony集成的基本流程
1. 数据准备与预处理
首先需要将原始数据按照批次变量进行分割。例如,如果批次信息存储在"Method"列中:
obj[["RNA"]] <- split(obj[["RNA"]], f = obj$Method)
然后进行标准的预处理步骤:
- 数据标准化(NormalizeData)
- 寻找高变基因(FindVariableFeatures)
- 数据缩放(ScaleData)
- PCA降维(RunPCA)
2. 使用IntegrateLayers进行Harmony整合
预处理完成后,可以直接调用IntegrateLayers函数进行Harmony整合:
obj <- IntegrateLayers(
object = obj,
method = HarmonyIntegration,
orig.reduction = "pca",
new.reduction = "harmony",
verbose = FALSE
)
3. 下游分析
整合完成后,可以进行UMAP降维和聚类分析:
obj <- RunUMAP(obj, reduction = "harmony", dims = 1:30, reduction.name = "umap.harmony")
4. 数据清理
最后建议进行数据清理以释放内存:
obj <- JoinLayers(obj)
obj[["RNA"]]$scale.data <- NULL
直接使用harmony包的替代方案
除了通过Seurat的IntegrateLayers接口,也可以直接调用harmony包:
# 合并数据集
obj_1 = merge(x=o1, y=o2)
# 标准预处理
obj_1 = NormalizeData(obj_1)
obj_1 = FindVariableFeatures(obj_1)
obj_1 = ScaleData(obj_1)
obj_1 = RunPCA(obj_1)
# 直接调用RunHarmony,指定批次变量
obj_1 = RunHarmony(obj_1, c("dataset","flowcell"))
# 下游分析
obj_1[["RNA"]] = JoinLayers(obj_1[["RNA"]])
obj_1 = FindNeighbors(obj_1, dims = 1:20, reduction = "harmony")
obj_1 = FindClusters(obj_1)
obj_1 = RunUMAP(obj_1, dims = 1:20, reduction = "harmony")
方法比较与选择
-
IntegrateLayers方法:
- 更符合Seurat的工作流
- 自动处理批次信息
- 适合Seurat v5的层级数据结构
-
直接RunHarmony方法:
- 更灵活,可以指定多个批次变量
- 适合需要精细控制的情况
- 适合熟悉harmony包的用户
注意事项
-
批次变量的选择至关重要,应该基于实验设计和技术因素确定。
-
在整合前后都应该检查数据质量,可以通过批次混合指标或可视化评估整合效果。
-
对于大型数据集,Harmony通常比CCA等方法更高效,但仍需注意内存使用。
-
整合后的数据通常用于降维和聚类,但不建议直接用于差异表达分析。
通过合理应用Harmony整合方法,可以有效地消除单细胞数据中的批次效应,使不同实验条件下的细胞能够被准确比较和分析。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1