CPython项目中关于setuptools和wheel依赖的优化与更新
在Python生态系统中,setuptools和wheel是两个至关重要的包管理工具。随着Python核心开发团队对CPython项目的持续维护,近期对测试套件中的这两个工具的依赖关系进行了重要调整。
背景与问题
在CPython的测试套件中,test.wheeldata目录一直包含捆绑的setuptools和wheel轮子文件,用于构建测试包。然而,随着setuptools 0.70.1及以上版本的发布,bdist_wheel方法已被原生集成到setuptools中,这意味着不再需要单独安装wheel库来构建轮子文件。
同时,wheel 0.46.0及以上版本移除了对packaging库的捆绑依赖,这使得当前版本的wheel在没有安装packaging的情况下无法正常使用。这种情况给测试环境带来了额外的复杂性。
解决方案
CPython开发团队决定采取以下措施:
- 更新test.wheeldata中的setuptools版本至最新稳定版
- 完全移除不再需要的wheel.whl文件
- 确保测试套件能够适应这些变更
这一变更不仅简化了测试依赖关系,还减少了仓库中不必要的二进制文件,优化了存储空间。
实施过程中的挑战
在实际实施过程中,开发团队遇到了一些意料之外的问题:
-
测试失败:test_cppext测试用例开始失败,报出"NameError: name 'sys' is not defined"错误。经调查发现,这是由于测试脚本中缺少必要的sys模块导入,而新版本的setuptools更严格地执行了模块导入检查。
-
弃用警告:
- 出现了"DeprecationWarning: Use shutil.which instead of find_executable"警告,提示需要更新代码以使用更现代的shutil.which方法
- 还有"DeprecationWarning: dep_util is Deprecated"警告,表明某些已弃用的功能仍在被使用
这些问题都被及时修复,确保了测试套件的稳定性和兼容性。
技术影响与意义
这次变更具有多重意义:
- 依赖简化:减少了不必要的依赖,使测试环境更加简洁
- 性能优化:减少了需要维护和更新的二进制文件数量
- 现代化:推动代码库使用最新的API和最佳实践
- 维护性提升:为未来可能的进一步依赖优化奠定了基础
对于Python开发者而言,这一变更也传递了一个重要信息:随着Python打包生态系统的成熟,许多传统的工作流程正在被简化和优化。
结论
CPython项目对setuptools和wheel依赖关系的这次调整,展示了开源项目持续演进和优化的过程。通过定期评估和更新依赖关系,项目能够保持代码的简洁性和现代性,同时为开发者提供更高效的开发体验。
这一变更也提醒我们,在Python生态系统中,工具链的不断演进可能会带来工作流程的简化,但也需要开发者保持对最新变化的关注,及时调整自己的开发实践。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00