ONNX Runtime在NVIDIA Jetson平台aarch64架构下的编译与安装问题解析
2025-05-13 21:33:55作者:伍霜盼Ellen
问题背景
在NVIDIA Jetson系列开发板(如Orin、Xavier等)这类ARM aarch64架构设备上,开发者经常需要为特定环境手动编译深度学习推理框架。ONNX Runtime作为微软推出的跨平台推理引擎,其官方文档提供了针对Jetson平台的编译指南,但在实际部署过程中仍可能遇到兼容性问题。
典型问题现象
当开发者按照官方文档完成以下步骤后:
- 在aarch64架构的Jetson设备上成功编译生成Python 3.12版本的wheel包(如onnxruntime_gpu-1.22.0-cp312-cp312-linux_aarch64.whl)
- 尝试通过pip安装时却收到错误提示:"wheel is not a supported wheel on this platform"
根本原因分析
经过技术排查,这类问题通常源于以下两个技术细节:
-
pip执行环境与Python环境不匹配
- 系统存在多个Python环境时(如通过miniforge管理的环境)
- 调用的pip命令来自全局路径(如/usr/local/bin/pip)而非当前Python环境对应的pip
-
wheel平台标签规范
- 官方构建系统生成的wheel可能使用"manylinux2014_aarch64"标签
- 但本地Python环境可能期望"linux_aarch64"等不同平台标识
解决方案
方法一:确保环境一致性
# 明确指定使用当前Python环境对应的pip
$(which python) -m pip install package.whl
方法二:wheel平台标签处理
- 检查wheel文件的平台标签:
wheel unpack package.whl
grep 'Tag:' package-*/package.dist-info/WHEEL
- 必要时可修改wheel文件名以匹配本地环境:
mv manylinux2014_aarch64.whl linux_aarch64.whl
深度技术建议
-
交叉编译注意事项
- 在x86主机上为aarch64交叉编译时,建议使用:
./build.sh --config Release --update --build --build_wheel \ --build_shared_lib --parallel --use_cuda \ --cuda_home /usr/local/cuda \ --cudnn_home /usr/lib/aarch64-linux-gnu \ --cmake_extra_defines CMAKE_OSX_ARCHITECTURES=arm64 -
Python版本管理
- 推荐使用conda/mamba创建隔离环境:
conda create -n onnx_env python=3.12 conda activate onnx_env -
运行时依赖检查
- 安装后验证CUDA库路径:
import onnxruntime as ort print(ort.get_device())
总结
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355