Wandb项目中如何通过Python代码设置折线图Y轴最大值
2025-05-24 16:23:49作者:幸俭卉
在机器学习实验跟踪工具Wandb的使用过程中,数据可视化是一个非常重要的功能。本文将详细介绍如何通过Python代码设置折线图Y轴的最大值,帮助开发者更好地控制数据展示范围。
问题背景
在Wandb的可视化面板中,用户经常需要调整折线图的Y轴范围以获得更好的数据展示效果。虽然可以通过网页界面手动调整,但在自动化实验流程中,能够通过代码预设这些参数会更加高效。
解决方案
Wandb提供了程序化工作区(programmatic workspaces)功能,允许开发者通过Python代码配置各种可视化参数。对于折线图Y轴范围的设置,可以使用range_y参数:
wr.LinePlot(range_y=(min_value, max_value))
完整示例代码
以下是一个完整的示例,展示如何创建Wandb项目、记录数据并设置折线图的Y轴范围:
import wandb
import wandb_workspaces.workspaces as ws
import wandb_workspaces.reports.v2 as wr
from datetime import datetime, timezone
# 初始化Wandb
wandb.login()
# 创建项目并记录数据
def create_project_and_log_data():
with wandb.init(project="MyProject") as run:
for step in range(100):
wandb.log({
"Step": step,
"val_loss": 1.0 / (step + 1),
"val_accuracy": step / 100.0,
"train_loss": 1.0 / (step + 2),
"train_accuracy": step / 110.0,
})
return "MyProject"
project = create_project_and_log_data()
entity = wandb.Api().default_entity
# 创建工作区并设置Y轴范围
def create_workspace_with_y_range(entity, project):
workspace = ws.Workspace(name="Custom Y Range Workspace",
entity=entity,
project=project)
workspace.sections = [
ws.Section(
name="Loss Section",
panels=[
wr.LinePlot(x="Step", y=["train_loss"], range_y=(0.0, 1.0)),
wr.LinePlot(x="Step", y=["val_loss"], range_y=(0.0, 1.0)),
]
),
ws.Section(
name="Accuracy Section",
panels=[
wr.LinePlot(x="Step", y=["train_accuracy"], range_y=(0.0, 1.0)),
wr.LinePlot(x="Step", y=["val_accuracy"], range_y=(0.0, 1.0)),
]
),
]
workspace.save()
create_workspace_with_y_range(entity, project)
技术细节
-
range_y参数:该参数接受一个包含最小值和最大值的元组,用于固定Y轴的显示范围。
-
工作区配置:通过
Workspace和Section类可以构建复杂的可视化面板布局。 -
数据类型支持:此方法适用于各种数值型数据,包括损失值、准确率等常见指标。
注意事项
-
确保使用的Wandb库版本支持程序化工作区功能。
-
设置的范围应合理包含数据的实际范围,否则可能导致数据点显示不全。
-
对于多曲线图表,设置的Y轴范围应能容纳所有曲线的数据范围。
通过这种方法,开发者可以在实验脚本中预设可视化参数,实现完全自动化的实验跟踪和结果展示流程。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869