首页
/ 花卉种类识别系统:利用深度学习技术实现精准分类

花卉种类识别系统:利用深度学习技术实现精准分类

2024-09-26 05:27:42作者:史锋燃Gardner

alt text

项目介绍

花卉种类识别系统是一个基于深度学习的开源项目,旨在通过卷积神经网络(CNN)和迁移学习技术,实现对花卉种类的精准识别。该项目由I.Gogul和V.Sathiesh Kumar开发,并在2017年的ICSCN会议上发表,相关论文已被IEEE Xplore数字图书馆收录。

项目技术分析

该项目采用了多种先进的预训练神经网络模型,包括Xception、Inception-v3、OverFeat、ResNet50、VGG16、VGG19、InceptionResNetv2和MobileNet。这些模型在ImageNet数据集上进行了预训练,并在此基础上对University of Oxford的FLOWERS17和FLOWERS102数据集进行了微调。分类器方面,项目使用了Logistic Regression进行模型训练。

项目及技术应用场景

花卉种类识别系统在多个领域具有广泛的应用前景:

  1. 农业与园艺:帮助农民和园艺师快速识别花卉种类,提高种植效率。
  2. 生态研究:用于植物学研究,帮助科学家识别和分类不同种类的花卉。
  3. 智能园艺系统:集成到智能园艺设备中,实现自动化的花卉识别和管理。
  4. 教育与科普:作为教育工具,帮助学生和公众了解和识别各种花卉。

项目特点

  1. 高精度识别:项目在FLOWERS17数据集上取得了高达98.53%的Rank-1准确率和100%的Rank-5准确率,显示出极高的识别精度。
  2. 多模型支持:支持多种先进的深度学习模型,用户可以根据需求选择最适合的模型进行特征提取和分类。
  3. 易于使用:项目提供了详细的教程和代码示例,用户可以轻松上手,快速搭建自己的花卉识别系统。
  4. 跨平台兼容:项目在Windows 10和Odroid-XU4上进行了开发和测试,具有良好的跨平台兼容性。

使用指南

  1. 数据集组织:使用python organize_flowers17.py脚本组织数据集。
  2. 特征提取:使用python extract_features.py脚本通过CNN提取特征。
  3. 模型训练:使用python train.py脚本训练模型,使用Logistic Regression进行分类。

依赖安装

项目依赖于以下Python库,可以通过pip进行安装:

  • Theano或TensorFlow:sudo pip install theanosudo pip install tensorflow
  • Keras:sudo pip install keras
  • NumPy:sudo pip install numpy
  • matplotlib:sudo pip install matplotlib 并执行 sudo apt-get install python-dev
  • seaborn:sudo pip install seaborn
  • h5py:sudo pip install h5py
  • scikit-learn:sudo pip install scikit-learn

结语

花卉种类识别系统是一个功能强大且易于使用的开源项目,适用于多种应用场景。无论你是研究人员、开发者还是爱好者,都可以通过该项目快速实现花卉种类的精准识别。快来尝试吧!

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
895
531
KonadoKonado
Konado是一个对话创建工具,提供多种对话模板以及对话管理器,可以快速创建对话游戏,也可以嵌入各类游戏的对话场景
GDScript
21
13
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
85
4
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
372
387
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
625
60
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
401
377