花卉种类识别系统:利用深度学习技术实现精准分类
2024-09-26 05:27:42作者:史锋燃Gardner

项目介绍
花卉种类识别系统是一个基于深度学习的开源项目,旨在通过卷积神经网络(CNN)和迁移学习技术,实现对花卉种类的精准识别。该项目由I.Gogul和V.Sathiesh Kumar开发,并在2017年的ICSCN会议上发表,相关论文已被IEEE Xplore数字图书馆收录。
项目技术分析
该项目采用了多种先进的预训练神经网络模型,包括Xception、Inception-v3、OverFeat、ResNet50、VGG16、VGG19、InceptionResNetv2和MobileNet。这些模型在ImageNet数据集上进行了预训练,并在此基础上对University of Oxford的FLOWERS17和FLOWERS102数据集进行了微调。分类器方面,项目使用了Logistic Regression进行模型训练。
项目及技术应用场景
花卉种类识别系统在多个领域具有广泛的应用前景:
- 农业与园艺:帮助农民和园艺师快速识别花卉种类,提高种植效率。
- 生态研究:用于植物学研究,帮助科学家识别和分类不同种类的花卉。
- 智能园艺系统:集成到智能园艺设备中,实现自动化的花卉识别和管理。
- 教育与科普:作为教育工具,帮助学生和公众了解和识别各种花卉。
项目特点
- 高精度识别:项目在FLOWERS17数据集上取得了高达98.53%的Rank-1准确率和100%的Rank-5准确率,显示出极高的识别精度。
- 多模型支持:支持多种先进的深度学习模型,用户可以根据需求选择最适合的模型进行特征提取和分类。
- 易于使用:项目提供了详细的教程和代码示例,用户可以轻松上手,快速搭建自己的花卉识别系统。
- 跨平台兼容:项目在Windows 10和Odroid-XU4上进行了开发和测试,具有良好的跨平台兼容性。
使用指南
- 数据集组织:使用
python organize_flowers17.py脚本组织数据集。 - 特征提取:使用
python extract_features.py脚本通过CNN提取特征。 - 模型训练:使用
python train.py脚本训练模型,使用Logistic Regression进行分类。
依赖安装
项目依赖于以下Python库,可以通过pip进行安装:
- Theano或TensorFlow:
sudo pip install theano或sudo pip install tensorflow - Keras:
sudo pip install keras - NumPy:
sudo pip install numpy - matplotlib:
sudo pip install matplotlib并执行sudo apt-get install python-dev - seaborn:
sudo pip install seaborn - h5py:
sudo pip install h5py - scikit-learn:
sudo pip install scikit-learn
结语
花卉种类识别系统是一个功能强大且易于使用的开源项目,适用于多种应用场景。无论你是研究人员、开发者还是爱好者,都可以通过该项目快速实现花卉种类的精准识别。快来尝试吧!
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0104
Sealos以应用为中心的智能云操作系统TSX00
GitCode百大开源项目GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
deepin linux kernel
C
22
6
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
895
531
Konado是一个对话创建工具,提供多种对话模板以及对话管理器,可以快速创建对话游戏,也可以嵌入各类游戏的对话场景
GDScript
21
13
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
85
4
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
372
387
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
625
60
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
401
377