首页
/ 花卉种类识别系统:利用深度学习技术实现精准分类

花卉种类识别系统:利用深度学习技术实现精准分类

2024-09-26 15:46:25作者:史锋燃Gardner

alt text

项目介绍

花卉种类识别系统是一个基于深度学习的开源项目,旨在通过卷积神经网络(CNN)和迁移学习技术,实现对花卉种类的精准识别。该项目由I.Gogul和V.Sathiesh Kumar开发,并在2017年的ICSCN会议上发表,相关论文已被IEEE Xplore数字图书馆收录。

项目技术分析

该项目采用了多种先进的预训练神经网络模型,包括Xception、Inception-v3、OverFeat、ResNet50、VGG16、VGG19、InceptionResNetv2和MobileNet。这些模型在ImageNet数据集上进行了预训练,并在此基础上对University of Oxford的FLOWERS17和FLOWERS102数据集进行了微调。分类器方面,项目使用了Logistic Regression进行模型训练。

项目及技术应用场景

花卉种类识别系统在多个领域具有广泛的应用前景:

  1. 农业与园艺:帮助农民和园艺师快速识别花卉种类,提高种植效率。
  2. 生态研究:用于植物学研究,帮助科学家识别和分类不同种类的花卉。
  3. 智能园艺系统:集成到智能园艺设备中,实现自动化的花卉识别和管理。
  4. 教育与科普:作为教育工具,帮助学生和公众了解和识别各种花卉。

项目特点

  1. 高精度识别:项目在FLOWERS17数据集上取得了高达98.53%的Rank-1准确率和100%的Rank-5准确率,显示出极高的识别精度。
  2. 多模型支持:支持多种先进的深度学习模型,用户可以根据需求选择最适合的模型进行特征提取和分类。
  3. 易于使用:项目提供了详细的教程和代码示例,用户可以轻松上手,快速搭建自己的花卉识别系统。
  4. 跨平台兼容:项目在Windows 10和Odroid-XU4上进行了开发和测试,具有良好的跨平台兼容性。

使用指南

  1. 数据集组织:使用python organize_flowers17.py脚本组织数据集。
  2. 特征提取:使用python extract_features.py脚本通过CNN提取特征。
  3. 模型训练:使用python train.py脚本训练模型,使用Logistic Regression进行分类。

依赖安装

项目依赖于以下Python库,可以通过pip进行安装:

  • Theano或TensorFlow:sudo pip install theanosudo pip install tensorflow
  • Keras:sudo pip install keras
  • NumPy:sudo pip install numpy
  • matplotlib:sudo pip install matplotlib 并执行 sudo apt-get install python-dev
  • seaborn:sudo pip install seaborn
  • h5py:sudo pip install h5py
  • scikit-learn:sudo pip install scikit-learn

结语

花卉种类识别系统是一个功能强大且易于使用的开源项目,适用于多种应用场景。无论你是研究人员、开发者还是爱好者,都可以通过该项目快速实现花卉种类的精准识别。快来尝试吧!

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
610
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
376
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0