花卉种类识别系统:利用深度学习技术实现精准分类
2024-09-26 09:55:06作者:史锋燃Gardner

项目介绍
花卉种类识别系统是一个基于深度学习的开源项目,旨在通过卷积神经网络(CNN)和迁移学习技术,实现对花卉种类的精准识别。该项目由I.Gogul和V.Sathiesh Kumar开发,并在2017年的ICSCN会议上发表,相关论文已被IEEE Xplore数字图书馆收录。
项目技术分析
该项目采用了多种先进的预训练神经网络模型,包括Xception、Inception-v3、OverFeat、ResNet50、VGG16、VGG19、InceptionResNetv2和MobileNet。这些模型在ImageNet数据集上进行了预训练,并在此基础上对University of Oxford的FLOWERS17和FLOWERS102数据集进行了微调。分类器方面,项目使用了Logistic Regression进行模型训练。
项目及技术应用场景
花卉种类识别系统在多个领域具有广泛的应用前景:
- 农业与园艺:帮助农民和园艺师快速识别花卉种类,提高种植效率。
- 生态研究:用于植物学研究,帮助科学家识别和分类不同种类的花卉。
- 智能园艺系统:集成到智能园艺设备中,实现自动化的花卉识别和管理。
- 教育与科普:作为教育工具,帮助学生和公众了解和识别各种花卉。
项目特点
- 高精度识别:项目在FLOWERS17数据集上取得了高达98.53%的Rank-1准确率和100%的Rank-5准确率,显示出极高的识别精度。
- 多模型支持:支持多种先进的深度学习模型,用户可以根据需求选择最适合的模型进行特征提取和分类。
- 易于使用:项目提供了详细的教程和代码示例,用户可以轻松上手,快速搭建自己的花卉识别系统。
- 跨平台兼容:项目在Windows 10和Odroid-XU4上进行了开发和测试,具有良好的跨平台兼容性。
使用指南
- 数据集组织:使用
python organize_flowers17.py脚本组织数据集。 - 特征提取:使用
python extract_features.py脚本通过CNN提取特征。 - 模型训练:使用
python train.py脚本训练模型,使用Logistic Regression进行分类。
依赖安装
项目依赖于以下Python库,可以通过pip进行安装:
- Theano或TensorFlow:
sudo pip install theano或sudo pip install tensorflow - Keras:
sudo pip install keras - NumPy:
sudo pip install numpy - matplotlib:
sudo pip install matplotlib并执行sudo apt-get install python-dev - seaborn:
sudo pip install seaborn - h5py:
sudo pip install h5py - scikit-learn:
sudo pip install scikit-learn
结语
花卉种类识别系统是一个功能强大且易于使用的开源项目,适用于多种应用场景。无论你是研究人员、开发者还是爱好者,都可以通过该项目快速实现花卉种类的精准识别。快来尝试吧!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
582
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
381
仓颉编程语言运行时与标准库。
Cangjie
130
394
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205