探索语义实体检索工具包:SERT
2024-09-25 12:35:57作者:范垣楠Rhoda
项目介绍
Semantic Entity Retrieval Toolkit (SERT) 是一个专注于神经实体检索算法的开源工具包。它汇集了多种先进的检索模型,旨在帮助研究人员和开发者更高效地进行实体检索任务。目前,SERT 包含了以下两个主要模型的实现:
- Log-Linear Model for Expertise Retrieval:该模型在 WWW 2016 上发表,专注于无监督、高效且语义化的专家检索。
- Latent Vector Space Model for Product Search:该模型在 CIKM 2016 上发表,用于学习产品搜索的潜在向量空间。
项目技术分析
SERT 的技术架构基于 Python 3.5,并依赖于多种 Python 模块(详见 requirements.txt)。为了进行评估和端到端脚本运行,SERT 需要 trec_eval 工具。此外,如果希望在 GPGPU 上训练模型,用户需要具备与 Theano 兼容的 GPU。
SERT 的核心优势在于其集成了多个前沿的神经检索模型,这些模型在各自的应用场景中表现出色。通过统一的接口和文档,SERT 使得用户可以轻松地切换和比较不同的模型,从而找到最适合其需求的解决方案。
项目及技术应用场景
SERT 的应用场景非常广泛,尤其适用于以下领域:
- 专家检索:在科研、企业内部知识管理等场景中,快速找到特定领域的专家是至关重要的。SERT 的 Log-Linear Model 能够高效地进行无监督的专家检索,帮助用户快速定位所需专家。
- 产品搜索:在电商平台上,用户往往需要通过关键词搜索到最符合其需求的产品。SERT 的 Latent Vector Space Model 能够学习产品的潜在向量空间,从而提升搜索的准确性和用户体验。
此外,SERT 还可以应用于其他需要高效实体检索的场景,如文档检索、知识图谱查询等。
项目特点
- 前沿模型集成:SERT 集成了多个在顶级会议上发表的先进检索模型,确保用户能够使用到最新的技术成果。
- 易于使用:通过详细的文档和示例,用户可以快速上手并开始使用 SERT 进行实体检索任务。
- 灵活性:SERT 支持在不同硬件环境下运行,无论是 CPU 还是 GPU,用户都可以根据需求进行配置。
- 开源与社区支持:SERT 采用 MIT 许可证,鼓励用户进行二次开发和贡献。同时,项目维护者也欢迎用户提出问题和建议,共同推动项目的发展。
结语
SERT 作为一个专注于神经实体检索的开源工具包,不仅提供了前沿的检索模型,还通过详细的文档和示例,帮助用户快速上手。无论是在专家检索还是产品搜索领域,SERT 都能为用户提供高效、准确的解决方案。如果你正在寻找一个强大的实体检索工具,SERT 绝对值得一试!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869