PyRIT项目中使用LM Studio本地运行大语言模型的实践指南
2025-07-01 00:29:14作者:管翌锬
前言
在人工智能安全研究领域,PyRIT作为一个强大的红队测试框架,为研究人员提供了评估大语言模型安全性的工具。本文将详细介绍如何在PyRIT框架中集成LM Studio本地运行的大语言模型,为研究人员提供一种经济高效的测试方案。
LM Studio简介
LM Studio是一款支持在本地计算机上运行开源大语言模型的工具,它提供了与AI服务API兼容的接口。这意味着任何支持AI服务API的应用程序都可以无缝对接LM Studio本地运行的模型,而PyRIT正是利用了这一点实现了对LM Studio的支持。
环境准备
基础环境配置
首先需要创建一个干净的Python环境,推荐使用conda进行管理:
conda create -n lm-studio python=3.11
conda activate lm-studio
pip install pyrit
LM Studio设置
- 下载并安装LM Studio
- 在开发者标签页中启动本地服务器,默认地址为
http://127.0.0.1:1234 - 选择并加载所需的大语言模型(如phi-3.1-mini-128k-instruct)
PyRIT集成配置
环境变量设置
创建.env文件,配置以下参数:
AI_CHAT_ENDPOINT="http://127.0.0.1:1234/v1/chat/completions"
AI_CHAT_MODEL="phi-3.1-mini-128k-instruct"
注意:AI_CHAT_MODEL的值应与LM Studio中加载模型的API标识符完全一致。
代码实现
以下是一个简单的PyRIT与LM Studio集成的示例代码:
import asyncio
from dotenv import load_dotenv
from pyrit.common import IN_MEMORY, initialize_pyrit
from pyrit.orchestrator import PromptSendingOrchestrator
from pyrit.prompt_target import AIChatTarget
load_dotenv()
initialize_pyrit(memory_db_type=IN_MEMORY)
async def main():
target = AIChatTarget()
prompt_list = ["示例提示1", "示例提示2", "示例提示3"]
orchestrator = PromptSendingOrchestrator(objective_target=target)
await orchestrator.send_prompts_async(prompt_list=prompt_list)
await orchestrator.print_conversations_async()
asyncio.run(main())
技术实现原理
PyRIT通过其AIChatTarget类实现了与AI服务API兼容后端的对接。当配置了本地LM Studio的API端点后,所有请求将被重定向到本地运行的模型而非云端服务。这种设计具有以下优势:
- 数据隐私:所有交互保持在本地,不涉及云端传输
- 成本效益:无需支付API调用费用
- 灵活性:支持各种开源模型
- 可控性:完全掌控模型参数和环境
使用建议
- 模型选择:根据测试需求选择合适大小的模型,小型模型适合快速迭代,大型模型适合复杂场景
- 性能调优:LM Studio提供了丰富的参数设置,可根据硬件配置调整
- 测试策略:建议从简单提示开始,逐步增加复杂度
- 结果分析:利用PyRIT内置的分析工具对模型响应进行评估
常见问题解决
- 连接失败:检查LM Studio服务器是否正常运行,端口是否正确
- 模型不匹配:确认
.env中的模型名称与LM Studio加载的模型完全一致 - 性能问题:降低模型参数或选择更小的模型变体
总结
通过PyRIT与LM Studio的集成,研究人员可以在本地环境中高效地进行大语言模型的安全性测试。这种方法不仅降低了成本,还提高了测试的灵活性和可控性。随着开源模型的不断发展,这种本地测试方案将变得越来越重要。
对于希望深入研究AI安全的研究人员来说,掌握PyRIT与本地模型的集成技术是开展有效红队测试的基础技能。本文提供的实践指南希望能为相关领域的研究者提供有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
698
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
280
React Native鸿蒙化仓库
JavaScript
270
328