PyRIT项目中使用LM Studio本地运行大语言模型的实践指南
2025-07-01 06:31:41作者:管翌锬
前言
在人工智能安全研究领域,PyRIT作为一个强大的红队测试框架,为研究人员提供了评估大语言模型安全性的工具。本文将详细介绍如何在PyRIT框架中集成LM Studio本地运行的大语言模型,为研究人员提供一种经济高效的测试方案。
LM Studio简介
LM Studio是一款支持在本地计算机上运行开源大语言模型的工具,它提供了与AI服务API兼容的接口。这意味着任何支持AI服务API的应用程序都可以无缝对接LM Studio本地运行的模型,而PyRIT正是利用了这一点实现了对LM Studio的支持。
环境准备
基础环境配置
首先需要创建一个干净的Python环境,推荐使用conda进行管理:
conda create -n lm-studio python=3.11
conda activate lm-studio
pip install pyrit
LM Studio设置
- 下载并安装LM Studio
- 在开发者标签页中启动本地服务器,默认地址为
http://127.0.0.1:1234 - 选择并加载所需的大语言模型(如phi-3.1-mini-128k-instruct)
PyRIT集成配置
环境变量设置
创建.env文件,配置以下参数:
AI_CHAT_ENDPOINT="http://127.0.0.1:1234/v1/chat/completions"
AI_CHAT_MODEL="phi-3.1-mini-128k-instruct"
注意:AI_CHAT_MODEL的值应与LM Studio中加载模型的API标识符完全一致。
代码实现
以下是一个简单的PyRIT与LM Studio集成的示例代码:
import asyncio
from dotenv import load_dotenv
from pyrit.common import IN_MEMORY, initialize_pyrit
from pyrit.orchestrator import PromptSendingOrchestrator
from pyrit.prompt_target import AIChatTarget
load_dotenv()
initialize_pyrit(memory_db_type=IN_MEMORY)
async def main():
target = AIChatTarget()
prompt_list = ["示例提示1", "示例提示2", "示例提示3"]
orchestrator = PromptSendingOrchestrator(objective_target=target)
await orchestrator.send_prompts_async(prompt_list=prompt_list)
await orchestrator.print_conversations_async()
asyncio.run(main())
技术实现原理
PyRIT通过其AIChatTarget类实现了与AI服务API兼容后端的对接。当配置了本地LM Studio的API端点后,所有请求将被重定向到本地运行的模型而非云端服务。这种设计具有以下优势:
- 数据隐私:所有交互保持在本地,不涉及云端传输
- 成本效益:无需支付API调用费用
- 灵活性:支持各种开源模型
- 可控性:完全掌控模型参数和环境
使用建议
- 模型选择:根据测试需求选择合适大小的模型,小型模型适合快速迭代,大型模型适合复杂场景
- 性能调优:LM Studio提供了丰富的参数设置,可根据硬件配置调整
- 测试策略:建议从简单提示开始,逐步增加复杂度
- 结果分析:利用PyRIT内置的分析工具对模型响应进行评估
常见问题解决
- 连接失败:检查LM Studio服务器是否正常运行,端口是否正确
- 模型不匹配:确认
.env中的模型名称与LM Studio加载的模型完全一致 - 性能问题:降低模型参数或选择更小的模型变体
总结
通过PyRIT与LM Studio的集成,研究人员可以在本地环境中高效地进行大语言模型的安全性测试。这种方法不仅降低了成本,还提高了测试的灵活性和可控性。随着开源模型的不断发展,这种本地测试方案将变得越来越重要。
对于希望深入研究AI安全的研究人员来说,掌握PyRIT与本地模型的集成技术是开展有效红队测试的基础技能。本文提供的实践指南希望能为相关领域的研究者提供有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.17 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
260
92
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
646
255