Apache Quickstep 开源项目下载与安装教程
2024-11-29 18:35:48作者:卓艾滢Kingsley
1. 项目介绍
Apache Quickstep 是一个高性能的数据库引擎,旨在充分利用现代计算机硬件的潜能,包括服务器和笔记本电脑。它支持单节点内存环境,即使在数据超过内存限制时也能正常工作。Quickstep 通过解耦数据流和控制流,实现查询执行的无限并行性,从而有效利用所有处理核心。项目起源于 2011 年威斯康星大学的研究项目,并于 2016 年 4 月进入 Apache 软件基金会的孵化阶段。
2. 项目下载位置
项目托管在 GitHub 上,您可以从以下位置克隆项目:
git clone https://git-wip-us.apache.org/repos/asf/incubator-quickstep.git quickstep
3. 项目安装环境配置
3.1 系统要求
- 操作系统:Linux 或 macOS
- 编译器:CMake
3.2 配置步骤
- 进入项目目录
cd quickstep
- 初始化项目依赖
git submodule init
- 更新项目依赖
git submodule update
- 下载额外的第三方依赖并应用补丁
cd third_party && ./download_and_patch_prerequisites.sh && cd ..
以下是环境配置的示例图片:
图 1:初始化项目依赖
图 2:更新项目依赖
图 3:下载并应用第三方依赖
(请注意,以上图片为示例,实际操作时不会有图片显示)
4. 项目安装方式
- 进入构建目录
cd build
- 创建 Makefile
cmake -D CMAKE_BUILD_TYPE=Release ..
- 构建项目
make -j4
(其中 -j4 可以替换为您的机器核心数)
5. 项目处理脚本
- 启动 Quickstep
/quickstep_cli_shell --initialize_db=true
- 加载数据并发送 SQL 查询
CREATE TABLE Weather (cid INTEGER, recordDate DATE, highTemperature FLOAT, lowTemperature FLOAT);
CREATE TABLE City (cid INTEGER, name VARCHAR(80), state CHAR(2));
INSERT INTO City VALUES (1, 'Madison', 'WI');
INSERT INTO City VALUES (2, 'Palo Alto', 'CA');
INSERT INTO Weather VALUES (1, '2015-11-1', 50, 30);
INSERT INTO Weather VALUES (1, '2015-11-2', 51, 32);
INSERT INTO Weather VALUES (2, '2015-11-1', 60, 50);
SELECT * FROM Weather W JOIN City C ON C.cid = W.cid WHERE C.state = 'CA';
SELECT cid, MIN(lowTemperature), MAX(highTemperature) FROM Weather GROUP BY cid;
SELECT * FROM City C JOIN (SELECT cid, MIN(lowTemperature), MAX(highTemperature) FROM Weather GROUP BY cid) AS T ON C.cid = T.cid;
- 退出 Quickstep
quit
以上就是 Apache Quickstep 开源项目的下载与安装教程。希望对您有所帮助!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
137
169
React Native鸿蒙化仓库
JavaScript
234
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
681
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
仓颉编程语言测试用例。
Cangjie
36
680