PyTorch基础教程:从张量操作到计算图理解
2025-06-19 07:52:51作者:史锋燃Gardner
前言
PyTorch作为当前最流行的深度学习框架之一,以其灵活的动态计算图和直观的API设计赢得了广大研究者和开发者的青睐。本教程将系统性地介绍PyTorch的核心基础概念,帮助初学者快速掌握这一强大工具。
1. PyTorch张量基础
1.1 张量简介
张量(Tensor)是PyTorch中最基本的数据结构,可以理解为多维数组的扩展。与NumPy数组类似,但具有额外的特性:
- 支持GPU加速计算
- 内置自动微分功能
- 丰富的操作API
import torch
print(f"PyTorch版本: {torch.__version__}")
1.2 张量创建方法
PyTorch提供了多种创建张量的方式:
# 从Python列表创建
x = torch.tensor([1, 2, 3, 4])
# 创建特定类型的张量
float_tensor = torch.tensor([1.0, 2.0, 3.0], dtype=torch.float32)
# 初始化特定形状的张量
zeros = torch.zeros(3, 4) # 全0张量
ones = torch.ones(2, 3) # 全1张量
rand = torch.rand(2, 2) # 均匀分布随机数
randn = torch.randn(2, 2) # 标准正态分布随机数
# 创建序列张量
range_tensor = torch.arange(0, 10, step=1)
linspace = torch.linspace(0, 1, steps=5)
1.3 张量属性
每个张量都有以下重要属性:
x = torch.randn(3, 4, 5)
print(f"形状: {x.shape}") # 张量维度
print(f"数据类型: {x.dtype}") # 元素类型
print(f"存储设备: {x.device}") # CPU/GPU
2. 张量操作详解
2.1 基本数学运算
PyTorch支持各种数学运算:
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
# 基本运算
print(a + b) # 加法
print(a * b) # 元素乘法
print(a @ b) # 点积
# 原地操作(会修改原张量)
c = torch.tensor([1, 2, 3])
c.add_(b) # 注意下划线后缀
2.2 矩阵运算
对于矩阵操作,PyTorch提供了专业支持:
A = torch.tensor([[1, 2], [3, 4]])
B = torch.tensor([[5, 6], [7, 8]])
# 矩阵乘法
print(torch.matmul(A, B))
print(A @ B) # 运算符形式
# 矩阵转置
print(A.t())
# 行列式和逆矩阵
print(torch.det(A.float()))
print(torch.inverse(A.float()))
2.3 张量变形
改变张量形状是常见操作:
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
# 改变形状
print(x.reshape(3, 2)) # 重新排列
print(x.view(6, 1)) # 视图(共享内存)
print(x.flatten()) # 展平为一维
# 维度操作
y = torch.tensor([[[1], [2]]])
print(y.squeeze()) # 去除长度为1的维度
print(torch.unsqueeze(x, 0)) # 增加维度
3. 自动微分与计算图
3.1 基本概念
PyTorch的核心特性之一是自动微分:
# 创建需要计算梯度的张量
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)
# 构建计算图
z = x**2 + y**3
# 计算梯度
z.backward()
# 查看梯度
print(x.grad) # dz/dx = 2x = 4
print(y.grad) # dz/dy = 3y² = 27
3.2 梯度累积机制
PyTorch会累积梯度,这在某些场景很有用:
x.grad.zero_() # 清空梯度
# 多次反向传播
z = x**2 + y**3
z.backward()
print(x.grad) # 4
z = x**2 + y**3
z.backward()
print(x.grad) # 8 (4+4)
4. 实用技巧与集成
4.1 与NumPy互操作
PyTorch与NumPy可以无缝转换:
import numpy as np
# NumPy转PyTorch
np_array = np.array([1, 2, 3])
tensor = torch.from_numpy(np_array)
# PyTorch转NumPy
tensor = torch.tensor([4, 5, 6])
np_array = tensor.numpy()
# 注意:某些情况下会共享内存
np_array[0] = 5 # 会同时修改tensor的值
4.2 GPU加速
利用GPU可以显著加速计算:
# 检查GPU可用性
if torch.cuda.is_available():
device = torch.device("cuda")
x_gpu = torch.tensor([1, 2, 3], device=device)
x_cpu = x_gpu.cpu() # 移回CPU
else:
print("GPU不可用")
5. 可视化示例
通过可视化理解函数与梯度的关系:
x = torch.linspace(-3, 3, 100, requires_grad=True)
y = x**2
# 计算各点梯度
gradients = []
for xi in x:
xi.backward(retain_graph=True)
gradients.append(x.grad.item())
x.grad.zero_()
# 绘图展示函数与导数关系
import matplotlib.pyplot as plt
plt.plot(x.detach(), y.detach(), label="f(x)=x²")
plt.plot(x.detach(), gradients, label="f'(x)=2x")
plt.legend()
plt.show()
总结
本教程系统介绍了PyTorch的基础知识,包括:
- 张量的创建与基本操作
- 各种数学运算和矩阵操作
- 自动微分机制与计算图原理
- 与NumPy的互操作和GPU加速
- 实用的可视化示例
掌握这些基础知识是使用PyTorch构建复杂神经网络模型的前提。建议读者通过实际练习加深理解,为后续学习更高级的PyTorch特性打下坚实基础。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133