PyTorch基础教程:从张量操作到计算图理解
2025-06-19 23:49:29作者:史锋燃Gardner
前言
PyTorch作为当前最流行的深度学习框架之一,以其灵活的动态计算图和直观的API设计赢得了广大研究者和开发者的青睐。本教程将系统性地介绍PyTorch的核心基础概念,帮助初学者快速掌握这一强大工具。
1. PyTorch张量基础
1.1 张量简介
张量(Tensor)是PyTorch中最基本的数据结构,可以理解为多维数组的扩展。与NumPy数组类似,但具有额外的特性:
- 支持GPU加速计算
- 内置自动微分功能
- 丰富的操作API
import torch
print(f"PyTorch版本: {torch.__version__}")
1.2 张量创建方法
PyTorch提供了多种创建张量的方式:
# 从Python列表创建
x = torch.tensor([1, 2, 3, 4])
# 创建特定类型的张量
float_tensor = torch.tensor([1.0, 2.0, 3.0], dtype=torch.float32)
# 初始化特定形状的张量
zeros = torch.zeros(3, 4) # 全0张量
ones = torch.ones(2, 3) # 全1张量
rand = torch.rand(2, 2) # 均匀分布随机数
randn = torch.randn(2, 2) # 标准正态分布随机数
# 创建序列张量
range_tensor = torch.arange(0, 10, step=1)
linspace = torch.linspace(0, 1, steps=5)
1.3 张量属性
每个张量都有以下重要属性:
x = torch.randn(3, 4, 5)
print(f"形状: {x.shape}") # 张量维度
print(f"数据类型: {x.dtype}") # 元素类型
print(f"存储设备: {x.device}") # CPU/GPU
2. 张量操作详解
2.1 基本数学运算
PyTorch支持各种数学运算:
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
# 基本运算
print(a + b) # 加法
print(a * b) # 元素乘法
print(a @ b) # 点积
# 原地操作(会修改原张量)
c = torch.tensor([1, 2, 3])
c.add_(b) # 注意下划线后缀
2.2 矩阵运算
对于矩阵操作,PyTorch提供了专业支持:
A = torch.tensor([[1, 2], [3, 4]])
B = torch.tensor([[5, 6], [7, 8]])
# 矩阵乘法
print(torch.matmul(A, B))
print(A @ B) # 运算符形式
# 矩阵转置
print(A.t())
# 行列式和逆矩阵
print(torch.det(A.float()))
print(torch.inverse(A.float()))
2.3 张量变形
改变张量形状是常见操作:
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
# 改变形状
print(x.reshape(3, 2)) # 重新排列
print(x.view(6, 1)) # 视图(共享内存)
print(x.flatten()) # 展平为一维
# 维度操作
y = torch.tensor([[[1], [2]]])
print(y.squeeze()) # 去除长度为1的维度
print(torch.unsqueeze(x, 0)) # 增加维度
3. 自动微分与计算图
3.1 基本概念
PyTorch的核心特性之一是自动微分:
# 创建需要计算梯度的张量
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)
# 构建计算图
z = x**2 + y**3
# 计算梯度
z.backward()
# 查看梯度
print(x.grad) # dz/dx = 2x = 4
print(y.grad) # dz/dy = 3y² = 27
3.2 梯度累积机制
PyTorch会累积梯度,这在某些场景很有用:
x.grad.zero_() # 清空梯度
# 多次反向传播
z = x**2 + y**3
z.backward()
print(x.grad) # 4
z = x**2 + y**3
z.backward()
print(x.grad) # 8 (4+4)
4. 实用技巧与集成
4.1 与NumPy互操作
PyTorch与NumPy可以无缝转换:
import numpy as np
# NumPy转PyTorch
np_array = np.array([1, 2, 3])
tensor = torch.from_numpy(np_array)
# PyTorch转NumPy
tensor = torch.tensor([4, 5, 6])
np_array = tensor.numpy()
# 注意:某些情况下会共享内存
np_array[0] = 5 # 会同时修改tensor的值
4.2 GPU加速
利用GPU可以显著加速计算:
# 检查GPU可用性
if torch.cuda.is_available():
device = torch.device("cuda")
x_gpu = torch.tensor([1, 2, 3], device=device)
x_cpu = x_gpu.cpu() # 移回CPU
else:
print("GPU不可用")
5. 可视化示例
通过可视化理解函数与梯度的关系:
x = torch.linspace(-3, 3, 100, requires_grad=True)
y = x**2
# 计算各点梯度
gradients = []
for xi in x:
xi.backward(retain_graph=True)
gradients.append(x.grad.item())
x.grad.zero_()
# 绘图展示函数与导数关系
import matplotlib.pyplot as plt
plt.plot(x.detach(), y.detach(), label="f(x)=x²")
plt.plot(x.detach(), gradients, label="f'(x)=2x")
plt.legend()
plt.show()
总结
本教程系统介绍了PyTorch的基础知识,包括:
- 张量的创建与基本操作
- 各种数学运算和矩阵操作
- 自动微分机制与计算图原理
- 与NumPy的互操作和GPU加速
- 实用的可视化示例
掌握这些基础知识是使用PyTorch构建复杂神经网络模型的前提。建议读者通过实际练习加深理解,为后续学习更高级的PyTorch特性打下坚实基础。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
281
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
248
317
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100