AzurLaneAutoScript 项目在 Linux 下的 Python 依赖冲突解决方案
在 Linux 系统上手动安装 AzurLaneAutoScript(简称 ALAS)时,用户可能会遇到 Python 依赖冲突的问题。本文将详细分析问题原因并提供多种解决方案。
问题背景
当用户在 Linux 环境下尝试通过传统方式安装 ALAS 时,使用 pip install -r requirements.txt
命令会遇到依赖冲突错误。主要冲突集中在 requests
库的版本要求上:
requirements.txt
明确指定requests==2.18.4
adbutils 0.11.0
依赖requests
gluoncv 0.6.0
依赖requests
mxnet 1.6.0
要求requests>=2.20.0
且<3
这种版本冲突导致安装过程无法继续。
解决方案
方案一:修改 requests 版本要求
最简单的解决方法是手动编辑 requirements.txt
文件,将 requests==2.18.4
修改为 requests==2.20.0
。这个版本既满足了 mxnet
的最低要求,又与大多数其他依赖兼容。
方案二:使用 requirements-in.txt
项目提供了 requirements-in.txt
文件,它采用了更宽松的版本限制策略。使用这个文件安装可以避免严格的版本冲突:
pip install -r requirements-in.txt
这种方法会安装较新的 requests 2.31.0
版本,但经过测试证明是稳定可用的。
方案三:使用 Docker 专用 requirements
对于 Linux 用户,项目还提供了专门为 Docker 环境准备的依赖文件:
pip install -r ./deploy/docker/requirements.txt
这个文件与 requirements-in.txt
的主要区别在于:
- 使用
opencv-python-headless
替代标准版,减少不必要的 GUI 依赖 - 不包含
alas-webapp
相关依赖
技术细节分析
-
Windows API 依赖处理:Linux 环境下需要手动移除
pywin32
依赖,因为该库仅支持 Windows 系统。 -
OpenCV 选择:在无头服务器环境下,
opencv-python-headless
是更好的选择,它移除了 GUI 相关功能,减少了不必要的依赖。 -
版本冲突本质:Python 包管理中的严格版本锁定(
==
)虽然能确保环境一致性,但在跨平台场景下可能造成兼容性问题。适当地放宽版本限制(使用>=
)可以提高安装成功率。
最佳实践建议
-
对于生产环境,推荐使用方案三(Docker 专用 requirements),它经过了容器化环境的充分测试。
-
开发环境下可以使用方案二,以获得更宽松的依赖环境。
-
如果必须严格遵循原始依赖版本,则采用方案一进行最小修改。
-
无论采用哪种方案,都建议在安装前清理环境:
conda clean -a
pip cache purge
通过理解这些解决方案的技术背景,用户可以更灵活地应对不同环境下的依赖管理需求,确保 ALAS 在 Linux 系统上的顺利运行。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









