AzurLaneAutoScript 项目在 Linux 下的 Python 依赖冲突解决方案
在 Linux 系统上手动安装 AzurLaneAutoScript(简称 ALAS)时,用户可能会遇到 Python 依赖冲突的问题。本文将详细分析问题原因并提供多种解决方案。
问题背景
当用户在 Linux 环境下尝试通过传统方式安装 ALAS 时,使用 pip install -r requirements.txt 命令会遇到依赖冲突错误。主要冲突集中在 requests 库的版本要求上:
requirements.txt明确指定requests==2.18.4adbutils 0.11.0依赖requestsgluoncv 0.6.0依赖requestsmxnet 1.6.0要求requests>=2.20.0且<3
这种版本冲突导致安装过程无法继续。
解决方案
方案一:修改 requests 版本要求
最简单的解决方法是手动编辑 requirements.txt 文件,将 requests==2.18.4 修改为 requests==2.20.0。这个版本既满足了 mxnet 的最低要求,又与大多数其他依赖兼容。
方案二:使用 requirements-in.txt
项目提供了 requirements-in.txt 文件,它采用了更宽松的版本限制策略。使用这个文件安装可以避免严格的版本冲突:
pip install -r requirements-in.txt
这种方法会安装较新的 requests 2.31.0 版本,但经过测试证明是稳定可用的。
方案三:使用 Docker 专用 requirements
对于 Linux 用户,项目还提供了专门为 Docker 环境准备的依赖文件:
pip install -r ./deploy/docker/requirements.txt
这个文件与 requirements-in.txt 的主要区别在于:
- 使用
opencv-python-headless替代标准版,减少不必要的 GUI 依赖 - 不包含
alas-webapp相关依赖
技术细节分析
-
Windows API 依赖处理:Linux 环境下需要手动移除
pywin32依赖,因为该库仅支持 Windows 系统。 -
OpenCV 选择:在无头服务器环境下,
opencv-python-headless是更好的选择,它移除了 GUI 相关功能,减少了不必要的依赖。 -
版本冲突本质:Python 包管理中的严格版本锁定(
==)虽然能确保环境一致性,但在跨平台场景下可能造成兼容性问题。适当地放宽版本限制(使用>=)可以提高安装成功率。
最佳实践建议
-
对于生产环境,推荐使用方案三(Docker 专用 requirements),它经过了容器化环境的充分测试。
-
开发环境下可以使用方案二,以获得更宽松的依赖环境。
-
如果必须严格遵循原始依赖版本,则采用方案一进行最小修改。
-
无论采用哪种方案,都建议在安装前清理环境:
conda clean -a
pip cache purge
通过理解这些解决方案的技术背景,用户可以更灵活地应对不同环境下的依赖管理需求,确保 ALAS 在 Linux 系统上的顺利运行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00