OpenCompass大模型评测框架0.4.0版本发布:支持更多模型与基准测试
OpenCompass作为一款开源的大模型评测框架,致力于为研究人员和开发者提供全面、客观的模型评估能力。该框架支持多种主流大语言模型在不同任务上的性能评测,帮助用户了解模型的实际表现。近日,OpenCompass团队正式发布了0.4.0版本,带来了一系列重要更新和功能增强。
核心功能升级
本次0.4.0版本最引人注目的更新之一是增加了对Longbenchv2的支持。Longbenchv2是一个专注于评估大模型长文本处理能力的基准测试集,能够更全面地测试模型在长上下文理解、信息提取和连贯性生成等方面的表现。这一更新使得OpenCompass在长文本评估领域的能力得到了显著提升。
另一个重要更新是新增了对InternLM3系列模型的支持。InternLM3是近年来备受关注的大语言模型系列,其优秀的性能表现使其成为研究热点。通过OpenCompass框架,研究人员现在可以方便地将InternLM3与其他主流模型进行横向对比评测。
评测方法创新
在主观评价方法方面,0.4.0版本将Bradley-Terry主观评价方法扩展到了Arena Hard数据集。Bradley-Terry模型是一种经典的配对比较统计方法,能够通过模型间的两两对比结果计算出相对排名。这一方法在Arena Hard数据集上的应用,使得对模型在困难任务上的表现评估更加科学和准确。
同时,团队还在CompassArenaBradleyTerrySummarizer中新增了预测胜率功能。这一改进使得评测结果更加直观,研究人员可以直接看到不同模型在对比中的相对优势程度,为模型选择提供了更丰富的信息。
基准测试扩展
本次更新还引入了MMLU-CF基准测试支持。MMLU-CF是对原有MMLU测试集的扩展和改进,覆盖了更广泛的知识领域和更复杂的推理任务。这一基准的加入进一步丰富了OpenCompass的评测维度,使模型评估更加全面。
此外,LiveMathBench也获得了更新,确保这一数学能力评测工具保持前沿性。数学推理能力是大语言模型的重要评估维度,LiveMathBench的更新使得数学能力评估更加精准和具有挑战性。
技术优化与改进
在技术架构方面,0.4.0版本进行了重要的代码重构工作,优化了项目结构,提高了代码的可维护性和扩展性。特别是对OpenAI模型类的重构,使得这部分代码更加清晰和易于维护。
针对开发者体验,团队修正了OpenAI模型中max_out_len参数的逻辑问题,确保模型输出的长度控制更加准确可靠。同时,CI管道的路径冲突问题也得到了解决,提高了持续集成的稳定性。
文档与社区建设
为帮助新用户更快上手,0.4.0版本更新了添加新数据集的文档说明,使扩展自定义数据集的过程更加清晰明了。安装指南也经过了修订,反映了最新的环境配置要求和方法。
值得一提的是,本次更新迎来了多位新贡献者的加入,他们为MMLU-CF基准支持、文档改进等工作做出了重要贡献,展现了OpenCompass社区日益壮大的活力。
总结
OpenCompass 0.4.0版本的发布标志着这一评测框架在功能丰富度、评测科学性和用户体验等方面都迈上了新的台阶。通过支持更多前沿模型和基准测试,优化评测方法,改进技术架构,该项目正逐步成为大模型评测领域的重要基础设施。对于从事大语言模型研究和应用开发的团队来说,这一版本提供了更加强大和便捷的评测工具,有助于推动整个领域的技术进步。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00