CCDC 项目启动与配置教程
2025-05-17 20:15:33作者:秋泉律Samson
1. 项目的目录结构及介绍
CCDC(Continuous Change Detection and Classification)项目是一个用于持续变化检测和分类的土地覆盖算法。该项目的主要目录结构如下:
CCDC/
├── GRIDobj/ # GRID对象相关文件
├── LICENSE # MIT 许可证文件
├── README.md # 项目说明文件
├── autoClassify.m # 自动分类函数
├── autoDetectChange12_30.m# 自动变化检测函数
├── autoPara.m # 参数自动设置函数
├── autoPrepareDataARD.m # 数据自动准备函数(ARD格式)
├── autoPrepareDataESPA.m # 数据自动准备函数(ESPA格式)
├── autoPrepareDataESPAC2.m# 数据自动准备函数(ESPA C2格式)
├── autoRobustFit.m # 自动稳健拟合函数
├── autoShowClassMap.m # 显示分类地图函数
├── autoShowSyn1.m # 显示合成图像1函数
├── autoShowSynAll.m # 显示所有合成图像函数
├── autoTSFit.m # 时间序列拟合函数
├── autoTSPred.m # 时间序列预测函数
├── autoTmask.m # 时间序列掩码函数
├── autoTrainRFC.m # 随机森林分类器训练函数
├── ccdc_Inputs.m # CCDC输入参数函数
├── classRF_predict.m # 随机森林分类器预测函数
├── classRF_train.m # 随机森林分类器训练函数
├── envihdrread.m # ENVI头文件读取函数
├── envihdrwrite.m # ENVI头文件写入函数
├── enviread.m # ENVI文件读取函数
├── enviwrite.m # ENVI文件写入函数
├── enviwrite_bands.m # ENVI文件波段写入函数
├── glmnet.m # GLMNet函数
├── glmnetCoef.m # GLMNet系数函数
├── glmnetMex.* # GLMNet MATLAB扩展文件
├── glmnetPlot.m # GLMNet绘图函数
├── glmnetPredict.m # GLMNet预测函数
├── glmnetPrint.m # GLMNet打印函数
├── glmnetSetL.m # GLMNet设置L函数
├── glmnet_fast.m # GLMNet快速函数
├── mexClassRF_predict.* # 随机森林分类器预测MEX文件
├── mexClassRF_train.* # 随机森林分类器训练MEX文件
├── mexRF_predict.* # 随机森林预测MEX文件
├── mexRF_train.* # 随机森林训练MEX文件
├── prepareARD.m # 准备ARD数据函数
├── read_envihdr.m # 读取ENVI头文件函数
├── robustfit_cor.m # 稳健拟合相关函数
├── rs_imwrite_bands.m # 写入RS波段数据函数
├── statrobustfit_cor.m # 统计稳健拟合相关函数
├── update_cft.m # 更新CFT函数
├── varead.m # 变量读取函数
每个文件夹和文件包含了算法实现的不同部分,包括数据处理、模型训练、预测和分析等。
2. 项目的启动文件介绍
CCDC项目的启动主要是通过MATLAB脚本实现的。以下是一些主要的启动文件:
autoDetectChange12_30.m:这是自动变化检测的主要脚本文件,用于检测土地覆盖的变化。autoClassify.m:这个脚本用于对变化进行分类。autoPrepareDataARD.m、autoPrepareDataESPA.m、autoPrepareDataESPAC2.m:这些脚本用于准备不同格式的输入数据。
用户需要根据自己的需求选择相应的启动文件,并在MATLAB环境中运行。
3. 项目的配置文件介绍
CCDC项目的配置主要是通过修改参数文件来实现的。以下是一个示例配置文件:
% CCDC 参数配置文件
%
% 变化概率阈值
change_probability = 0.99;
%
% 连续观测的天数
consecutive_observations = 6;
%
% 时间序列模型的最大系数数
max_coefficients = 8;
%
% 用户可以根据自己的需求修改以上参数
用户可以根据自己的需求修改这些参数,然后将配置文件保存并在运行脚本之前加载这些配置。这样,CCDC算法会根据用户提供的参数运行。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178