CCDC 项目启动与配置教程
2025-05-17 22:27:14作者:秋泉律Samson
1. 项目的目录结构及介绍
CCDC(Continuous Change Detection and Classification)项目是一个用于持续变化检测和分类的土地覆盖算法。该项目的主要目录结构如下:
CCDC/
├── GRIDobj/ # GRID对象相关文件
├── LICENSE # MIT 许可证文件
├── README.md # 项目说明文件
├── autoClassify.m # 自动分类函数
├── autoDetectChange12_30.m# 自动变化检测函数
├── autoPara.m # 参数自动设置函数
├── autoPrepareDataARD.m # 数据自动准备函数(ARD格式)
├── autoPrepareDataESPA.m # 数据自动准备函数(ESPA格式)
├── autoPrepareDataESPAC2.m# 数据自动准备函数(ESPA C2格式)
├── autoRobustFit.m # 自动稳健拟合函数
├── autoShowClassMap.m # 显示分类地图函数
├── autoShowSyn1.m # 显示合成图像1函数
├── autoShowSynAll.m # 显示所有合成图像函数
├── autoTSFit.m # 时间序列拟合函数
├── autoTSPred.m # 时间序列预测函数
├── autoTmask.m # 时间序列掩码函数
├── autoTrainRFC.m # 随机森林分类器训练函数
├── ccdc_Inputs.m # CCDC输入参数函数
├── classRF_predict.m # 随机森林分类器预测函数
├── classRF_train.m # 随机森林分类器训练函数
├── envihdrread.m # ENVI头文件读取函数
├── envihdrwrite.m # ENVI头文件写入函数
├── enviread.m # ENVI文件读取函数
├── enviwrite.m # ENVI文件写入函数
├── enviwrite_bands.m # ENVI文件波段写入函数
├── glmnet.m # GLMNet函数
├── glmnetCoef.m # GLMNet系数函数
├── glmnetMex.* # GLMNet MATLAB扩展文件
├── glmnetPlot.m # GLMNet绘图函数
├── glmnetPredict.m # GLMNet预测函数
├── glmnetPrint.m # GLMNet打印函数
├── glmnetSetL.m # GLMNet设置L函数
├── glmnet_fast.m # GLMNet快速函数
├── mexClassRF_predict.* # 随机森林分类器预测MEX文件
├── mexClassRF_train.* # 随机森林分类器训练MEX文件
├── mexRF_predict.* # 随机森林预测MEX文件
├── mexRF_train.* # 随机森林训练MEX文件
├── prepareARD.m # 准备ARD数据函数
├── read_envihdr.m # 读取ENVI头文件函数
├── robustfit_cor.m # 稳健拟合相关函数
├── rs_imwrite_bands.m # 写入RS波段数据函数
├── statrobustfit_cor.m # 统计稳健拟合相关函数
├── update_cft.m # 更新CFT函数
├── varead.m # 变量读取函数
每个文件夹和文件包含了算法实现的不同部分,包括数据处理、模型训练、预测和分析等。
2. 项目的启动文件介绍
CCDC项目的启动主要是通过MATLAB脚本实现的。以下是一些主要的启动文件:
autoDetectChange12_30.m
:这是自动变化检测的主要脚本文件,用于检测土地覆盖的变化。autoClassify.m
:这个脚本用于对变化进行分类。autoPrepareDataARD.m
、autoPrepareDataESPA.m
、autoPrepareDataESPAC2.m
:这些脚本用于准备不同格式的输入数据。
用户需要根据自己的需求选择相应的启动文件,并在MATLAB环境中运行。
3. 项目的配置文件介绍
CCDC项目的配置主要是通过修改参数文件来实现的。以下是一个示例配置文件:
% CCDC 参数配置文件
%
% 变化概率阈值
change_probability = 0.99;
%
% 连续观测的天数
consecutive_observations = 6;
%
% 时间序列模型的最大系数数
max_coefficients = 8;
%
% 用户可以根据自己的需求修改以上参数
用户可以根据自己的需求修改这些参数,然后将配置文件保存并在运行脚本之前加载这些配置。这样,CCDC算法会根据用户提供的参数运行。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息09GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
426
34

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
239
9

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
988
394

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69