Harvester 集群升级中升级仓库虚拟机的优化策略
背景与问题分析
在Harvester多节点集群升级过程中,升级仓库虚拟机(upgrade-repo VM)的处理方式存在优化空间。当前实现中,当升级仓库虚拟机位于预排空节点上时,系统会先关闭该虚拟机,然后在排空后作业中重新启动它。这种处理方式虽然功能上可行,但并非最优方案。
技术现状
Harvester作为基于Kubernetes和KubeVirt构建的现代超融合基础设施平台,其升级机制需要确保系统服务的持续可用性。升级仓库虚拟机作为升级过程中的关键组件,负责提供必要的升级资源。当前的关闭-重启策略虽然保证了功能完整性,但存在以下不足:
- 不必要的停机时间
- 资源使用效率低下
- 可能影响升级过程的整体速度
优化方案
通过分析KubeVirt的虚拟机迁移能力,我们可以实现更优雅的解决方案:
-
实时迁移替代关机:利用KubeVirt的实时迁移功能,将升级仓库虚拟机从待排空节点迁移到其他可用节点,避免不必要的关机操作。
-
迁移过程优化:在预排空阶段触发迁移操作,确保虚拟机在节点排空前完成迁移,不影响升级流程。
-
CPU兼容性处理:针对不同CPU架构导致的迁移失败问题,建议将虚拟机CPU模式设置为"host-passthrough",提高跨节点迁移的成功率。
实现细节
在技术实现层面,优化主要涉及以下方面:
-
升级控制器修改:调整升级控制器逻辑,识别升级仓库虚拟机并触发迁移而非关机。
-
迁移策略配置:配置适当的迁移参数,包括超时设置和并行迁移限制。
-
异常处理机制:保留关机作为迁移失败时的后备方案,确保升级过程健壮性。
验证与效果
在实际测试环境中,优化后的方案表现出以下优势:
- 升级仓库虚拟机成功完成实时迁移,状态保持连续。
- 迁移过程平均耗时约7秒(从迁移开始到完成)。
- 系统日志显示迁移状态完整记录,便于问题排查。
- 升级过程整体时间缩短,资源利用率提高。
总结
通过对Harvester升级过程中升级仓库虚拟机处理策略的优化,我们实现了更高效、更可靠的集群升级体验。这一改进不仅减少了不必要的虚拟机重启,还充分利用了KubeVirt的实时迁移能力,为大规模生产环境中的系统升级提供了更好的支持。未来,我们还将继续探索更多优化点,如智能迁移目标选择、迁移过程资源预留等,进一步提升Harvester的升级体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00