Langchain-ChatGLM项目中图片资源地址获取问题的分析与解决
2025-05-04 06:14:48作者:管翌锬
在Langchain-ChatGLM项目的实际部署过程中,开发者可能会遇到一个关于图片资源获取的典型问题:当项目部署在非本地服务器时,上传的图片无法正常显示。本文将深入分析这一问题的成因,并提供完整的解决方案。
问题现象
当用户在使用Langchain-ChatGLM项目时,如果尝试上传图片并发送包含图片的消息,会发现图片无法正常显示。具体表现为:
- 图片上传过程看似成功完成
- 但在消息发送后,图片位置显示为"找不到图片"的错误提示
- 浏览器开发者工具中可以看到图片资源请求失败
问题根源分析
经过代码审查,发现问题出在webui_pages/dialogue/dialogue.py文件中的get_image_file_url函数实现上。该函数负责生成图片资源的访问URL,但存在以下设计缺陷:
- 硬编码本地地址:函数默认使用127.0.0.1作为服务器地址,这在本地开发环境可以正常工作,但在服务器部署场景下会导致客户端无法访问
- API地址获取逻辑不完整:函数调用
api_address()时没有传递必要的参数,导致无法获取正确的服务器地址
技术细节
在Web应用中,资源URL的生成需要考虑多种部署场景:
- 开发环境通常使用localhost或127.0.0.1
- 生产环境则需要使用域名或服务器真实IP
- 可能需要考虑HTTPS与HTTP协议的区别
- 需要处理端口号等细节问题
原代码中的实现没有充分考虑这些因素,导致生成的图片URL在非本地环境下无效。
解决方案
针对这一问题,可以通过修改get_image_file_url函数的实现来解决:
def get_image_file_url(upload_file: dict) -> str:
file_id = upload_file.get("id")
return f"{api_address(True)}/v1/files/{file_id}/content"
关键修改点:
- 为
api_address()函数传入True参数,确保获取完整的服务器地址 - 保持原有的URL路径拼接逻辑不变
验证方法
修改后,可以通过以下步骤验证问题是否解决:
- 在服务器上重新部署修改后的代码
- 上传一张测试图片
- 发送包含该图片的消息
- 检查图片是否能正常显示
- 通过浏览器开发者工具查看图片的实际请求URL,确认地址正确
最佳实践建议
为避免类似问题,在开发Web应用时建议:
- 避免硬编码地址:所有资源URL都应通过配置或函数动态生成
- 考虑多环境部署:代码应能在开发、测试、生产等不同环境中正常工作
- 统一地址管理:将服务器地址等配置集中管理,便于维护和修改
- 增加环境检测:代码可以自动检测运行环境并生成合适的资源地址
总结
Langchain-ChatGLM项目中图片资源地址获取问题是一个典型的部署环境适配问题。通过分析问题根源并修改相关代码,可以确保项目在不同环境下都能正常工作。这一案例也提醒开发者,在编写网络应用时需要考虑多种部署场景,避免因环境差异导致的功能异常。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217