Arrow DataFusion 内存管理优化:为 MemoryConsumer 引入唯一标识符
2025-05-31 05:51:08作者:裴锟轩Denise
背景与问题分析
在 Apache Arrow DataFusion 项目中,内存管理是一个核心挑战,特别是在内存受限的环境中。当前系统的 MemoryConsumer 机制存在一个关键限制:无法有效区分相同类型的连续操作符实例。这导致在内存分配和跟踪方面只能进行非常基础的管理。
现有实现中,MemoryConsumer 的默认相等性比较仅基于名称(name)和是否可溢出(spillable)两个字段。当同一分区上运行多个相同类型的操作符时,这种比较方式无法区分它们,使得精细化的内存控制变得困难。
现有机制的局限性
- 操作符识别不足:三个连续的同类型操作符会被视为相同的 MemoryConsumer
- 内存预留跟踪困难:MemoryReservation 在创建、分割或合并后难以追踪其生命周期
- 统计粒度粗糙:目前只能在 register() 和 unregister() 函数中统计操作符数量
这些问题严重限制了在内存受限环境下实现精确内存分配的可能性。
解决方案设计
全局唯一标识符方案
为 MemoryConsumer 引入全局唯一 ID 是解决上述问题的有效方法。具体实现建议:
-
消费者级别ID:使用原子计数器为每个 MemoryConsumer 分配唯一ID
fn new_consumer_id() -> u64 { static ID: AtomicU64 = AtomicU64::new(0); ID.fetch_add(1, atomic::Ordering::Relaxed) } -
预留级别ID:为 MemoryReservation 引入消费者内部的唯一ID
current_reservation: Arc::new(AtomicU64::new(0)), pub fn new_reservation_id(&self) -> u64 { self.current_reservation.fetch_add(1, atomic::Ordering::Relaxed) }
实现考量
经过深入分析,发现 MemoryReservation 的分割操作(split_off)会创建具有特定大小的新预留,这使得基于预留级别的内存跟踪变得复杂。因此,更实用的方案是:
- 专注于 MemoryConsumer 级别的ID:提供足够的内存管理粒度
- 简化实现:避免过度设计预留级别的跟踪机制
- 非侵入式修改:保持现有API的兼容性
技术优势
- 精确内存跟踪:能够区分同一分区上的相同类型操作符
- 更好的内存控制:为内存池和公平调度提供基础
- 调试能力增强:通过唯一ID可以追踪内存使用情况
- 性能影响小:原子计数器的开销可以忽略不计
实施建议
- 首先为 MemoryConsumer trait 添加 id() 方法
- 实现全局ID生成机制
- 在 MemoryConsumer 创建时自动分配ID
- 逐步完善基于ID的内存监控工具
这种改进将为 DataFusion 的内存管理提供更强大的基础,特别是在处理复杂查询和内存受限环境时,能够实现更精细的资源控制和更公平的调度策略。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146