推荐开源项目:SWEM——简单基于词嵌入的模型
2024-05-23 16:59:57作者:谭伦延
1、项目介绍
SWEM(Simple Word-Embedding-based Models)是一个由Dinghan Shen维护的开源项目,它为自然语言处理领域的研究人员提供了一种简洁且高效的文本分类框架。该项目源于其在ACL 2018会议上发表的论文《Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms》。SWEM的目标是通过简单的词嵌入和池化机制,展示在多种任务中强大的性能。
2、项目技术分析
SWEM的核心是利用预训练的词嵌入进行文本表示,并在此基础上通过一个简化的神经网络结构进行分类。项目集成了TensorFlow库,并要求版本大于1.0。利用CUDA和cuDNN优化GPU计算,使得模型训练速度快且高效。此外,项目还提供了子空间训练和内在维度测量的功能,以评估模型的复杂性和有效性。
3、项目及技术应用场景
SWEM可用于以下场景:
- Ontology Classification(本体分类):如DBpedia数据集上的任务,分类大量条目到精细的类别。
- Natural Language Inference(自然语言推理):例如在SNLI数据集上进行句子对的关系判断。
- Topic Categorization(主题分类):如Yahoo! Answer数据集,将问题分配到相关类别。
每个任务都有对应的Python脚本,如eval_dbpedia_emb.py、eval_snli_emb.py和eval_yahoo_emb.py,易于运行和调整参数。
4、项目特点
- 简单易用: 项目提供的代码结构清晰,易于理解和实现,无需复杂的预处理步骤。
- 高效: 利用Tensorflow框架和GPU加速,训练速度极快,如DBpedia只需约3分钟每个epoch。
- 灵活: 可以通过修改配置选项类进行参数调整,如嵌入向量大小、dropout率和学习率等。
- 可扩展性: 提供了衡量任务内在维度的方法,有助于理解模型的复杂性和泛化能力。
- 全面支持: 提供了多个常用数据集的预处理版本,可以直接运行实验,便于对比和研究。
如果你正在寻找一个轻巧但强大的文本分类基线,或者想深入探究词嵌入与池化机制的效果,那么SWEM无疑是一个值得尝试的开源项目。请确保正确引用项目论文,一起探索NLP的世界吧!
@inproceedings{Shen2018Baseline,
title={Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms},
author={Shen, Dinghan and Wang, Guoyin and Wang, Wenlin and Renqiang Min, Martin and Su, Qinliang and Zhang, Yizhe and Li, Chunyuan and Henao, Ricardo and Carin, Lawrence},
booktitle={ACL},
year={2018}
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76