推荐开源项目:SWEM——简单基于词嵌入的模型
2024-05-23 16:59:57作者:谭伦延
1、项目介绍
SWEM(Simple Word-Embedding-based Models)是一个由Dinghan Shen维护的开源项目,它为自然语言处理领域的研究人员提供了一种简洁且高效的文本分类框架。该项目源于其在ACL 2018会议上发表的论文《Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms》。SWEM的目标是通过简单的词嵌入和池化机制,展示在多种任务中强大的性能。
2、项目技术分析
SWEM的核心是利用预训练的词嵌入进行文本表示,并在此基础上通过一个简化的神经网络结构进行分类。项目集成了TensorFlow库,并要求版本大于1.0。利用CUDA和cuDNN优化GPU计算,使得模型训练速度快且高效。此外,项目还提供了子空间训练和内在维度测量的功能,以评估模型的复杂性和有效性。
3、项目及技术应用场景
SWEM可用于以下场景:
- Ontology Classification(本体分类):如DBpedia数据集上的任务,分类大量条目到精细的类别。
- Natural Language Inference(自然语言推理):例如在SNLI数据集上进行句子对的关系判断。
- Topic Categorization(主题分类):如Yahoo! Answer数据集,将问题分配到相关类别。
每个任务都有对应的Python脚本,如eval_dbpedia_emb.py、eval_snli_emb.py和eval_yahoo_emb.py,易于运行和调整参数。
4、项目特点
- 简单易用: 项目提供的代码结构清晰,易于理解和实现,无需复杂的预处理步骤。
- 高效: 利用Tensorflow框架和GPU加速,训练速度极快,如DBpedia只需约3分钟每个epoch。
- 灵活: 可以通过修改配置选项类进行参数调整,如嵌入向量大小、dropout率和学习率等。
- 可扩展性: 提供了衡量任务内在维度的方法,有助于理解模型的复杂性和泛化能力。
- 全面支持: 提供了多个常用数据集的预处理版本,可以直接运行实验,便于对比和研究。
如果你正在寻找一个轻巧但强大的文本分类基线,或者想深入探究词嵌入与池化机制的效果,那么SWEM无疑是一个值得尝试的开源项目。请确保正确引用项目论文,一起探索NLP的世界吧!
@inproceedings{Shen2018Baseline,
title={Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms},
author={Shen, Dinghan and Wang, Guoyin and Wang, Wenlin and Renqiang Min, Martin and Su, Qinliang and Zhang, Yizhe and Li, Chunyuan and Henao, Ricardo and Carin, Lawrence},
booktitle={ACL},
year={2018}
}
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19