深入解析Semantic Kernel:构建智能应用的核心框架
2025-06-19 08:43:26作者:翟江哲Frasier
什么是Semantic Kernel?
Semantic Kernel(SK)是微软推出的一个开源SDK,它作为应用程序代码与大型语言模型(LLM)之间的中间件,帮助开发者轻松地将AI能力集成到应用中。SK的核心价值在于它能够:
- 桥接AI与代码:让AI能够理解和调用现有的代码功能
- 模块化设计:通过插件(Skills)系统实现功能的灵活扩展
- 企业级支持:内置安全、可观测性和合规性功能
- 多模态支持:兼容多种AI服务和模式
- 快速开发:简化提示编排、函数调用和内存管理等复杂任务
Semantic Kernel的核心组件
1. Kernel(内核)
Kernel是SK架构的核心,负责协调所有操作。它主要功能包括:
- 管理AI服务配置
- 维护插件(技能)系统
- 协调函数调用
- 维护上下文状态(内存)
from semantic_kernel.kernel import Kernel
kernel = Kernel()
2. AI服务连接
SK支持连接多种AI模型服务:
- 聊天模型(如Azure OpenAI GPT-4)
- 嵌入模型(用于文本向量化)
- 其他模态(如图像、语音等)
配置示例:
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
# 从.env文件自动加载配置
chat_completion = AzureChatCompletion()
kernel.add_service(chat_completion)
函数与插件系统
1. 函数类型
SK支持两种函数类型:
-
语义函数:基于提示词和LLM
prompt_template = "{{$input}}\n\nTL;DR in one sentence:" summarize_fn = kernel.add_function( prompt=prompt_template, function_name="tldr", plugin_name="Summarizer" )
-
原生函数:基于代码实现
from semantic_kernel.functions import kernel_function class MathPlugin: @kernel_function def add(self, a: int, b: int) -> int: return a + b
2. 插件(Skills)
插件是相关功能的集合,可以:
- 通过类定义
- 从文件加载
- 基于OpenAPI规范创建
kernel.add_plugin(plugin=MathPlugin(), plugin_name="Math")
实战示例:智能家居控制
让我们通过一个智能家居灯光控制的例子,展示SK的自动函数调用能力:
class LightsPlugin:
def __init__(self, lights):
self.lights = lights
@kernel_function
async def get_lights(self) -> List[LightModel]:
return self.lights
@kernel_function
async def change_state(self, id: int, new_state: LightModel):
for light in self.lights:
if light["id"] == id:
light.update(new_state)
return light
return None
# 使用示例
lights = [{"id": 1, "name": "Table Lamp", "is_on": False}]
plugin = LightsPlugin(lights=lights)
kernel.add_plugin(plugin=plugin, plugin_name="Lights")
# AI自动调用函数
history.add_user_message("Please turn on the lamp")
result = await chat_completion.get_chat_message_content(
chat_history=history,
settings=execution_settings,
kernel=kernel
)
练习:创建天气插件
任务要求
创建一个WeatherPlugin类,包含以下功能:
get_current_weather(location)
:获取当前位置天气get_forecast(location, days)
:获取多日天气预报get_weather_alert(location)
:获取天气警报
参考实现
from typing import Annotated, List, Dict
from semantic_kernel.functions import kernel_function
import random
class WeatherPlugin:
def __init__(self):
self.conditions = ["晴", "多云", "雨", "雪", "大风", "雾", "雷暴"]
self.alerts = ["无", "暴雨警告", "大风警告", "高温预警"]
@kernel_function
async def get_current_weather(self, location: str) -> Dict:
return {
"location": location,
"temperature": random.randint(-10, 35),
"condition": random.choice(self.conditions)
}
@kernel_function
async def get_forecast(self, location: str, days: int) -> List[Dict]:
return [{
"date": f"Day {i+1}",
"temperature": random.randint(-10, 35),
"condition": random.choice(self.conditions)
} for i in range(days)]
@kernel_function
async def get_weather_alert(self, location: str) -> Dict:
return {
"location": location,
"alert": random.choice(self.alerts)
}
总结
Semantic Kernel为AI应用开发提供了强大的基础设施:
- 简化集成:轻松连接AI模型与现有代码
- 模块化架构:通过插件系统实现功能扩展
- 自动编排:智能管理多步骤函数调用
- 企业级支持:内置安全与监控功能
通过本文的讲解和示例,您应该已经掌握了SK的核心概念和基本使用方法。接下来可以尝试构建更复杂的AI应用,如智能客服、数据分析助手等。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K