SLM Lab 开源项目安装与使用指南
1. 项目目录结构及介绍
SLM Lab 是一个用于深度强化学习(Deep Reinforcement Learning, DRL)研究的综合基准与模块化软件框架。以下是对项目主要目录结构的简介:
-
src: 核心源代码所在目录。agent: 包含不同种类的智能体实现(如DDQN, PER, A2C, PPO等)。env_spec: 环境规格定义,支持多种环境,包括Gym, Roboschool, VizDoom等。lab: 项目的核心命令控制与实验组织模块。search: 超参数搜索相关的工具与逻辑。utils: 辅助工具函数集合。
-
spec: 配置规范目录,包含了各种算法、环境、实验的配置示例。- 分别有
agent_spec,env_spec,exp_spec,meta_spec等子目录,对应不同的配置类型。
- 分别有
-
bin: 启动脚本存放位置,提供便捷的程序入口。 -
example: 示例和教程数据,帮助快速上手。 -
docs: 文档资料,包含API说明和用户指南。 -
.gitignore,LICENSE,README.md等常规的Git管理与项目说明文件。
2. 项目的启动文件介绍
在bin目录下通常能找到项目的启动脚本。例如,启动一个基本的训练任务可能会使用类似于run_lab.sh的脚本。命令可能包含指定配置文件路径、选择算法和环境等选项。一个典型的命令格式可能是:
./bin/run_lab.sh --config path/to/config.yaml
其中path/to/config.yaml是配置文件的路径,它定义了实验的具体设置。
3. 项目的配置文件介绍
配置文件是SLM Lab中极其重要的一部分,位于spec目录下或由用户自定义路径。这些YAML格式的文件分为几种主要类型:
-
环境配置(
env_spec): 指定使用的环境及其相关参数,比如Gym的CartPole或LunarLander。 -
智能体配置(
agent_spec): 定义所用智能体类型及其超参数,涵盖学习率、网络架构等。 -
实验配置(
exp_spec): 控制实验的运行细节,包括训练轮次、记录频率、是否异步训练等。 -
元配置(
meta_spec): 高层次的设置,可以影响整个实验流程,如基准测试设定。
配置文件通过键值对的形式清晰地定义了每项设置,允许用户高度定制化其强化学习实验。例如,在一个agent_spec文件中,你会看到类似下面的结构来配置一个A2C代理:
name: a2c
policy: lstm
hyper: # 超参数定义
gamma: 0.99
lr: 7e-4
ent_coef: 0.01
...
每个配置文件都是可读性强且灵活的,使得研究人员和开发者能够轻松调整以适应不同的研究需求。
此简要指南旨在快速入门SLM Lab,详细操作步骤和深入理解每个部分的功能需参考项目中的官方文档和样例配置文件。记得在实际使用过程中,根据具体需求仔细阅读相关文档。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00