GANet 项目使用教程
1. 项目介绍
GANet(Guided Aggregation Net)是一个用于端到端立体匹配的深度学习网络。该项目将传统的立体匹配几何和优化问题转化为深度神经网络,旨在提高立体匹配的准确性和效率。GANet 通过引导聚合网络(GA-Net)来实现这一目标,该网络在多个基准数据集上表现出色,特别是在 SceneFlow、KITTI 2012 和 KITTI 2015 数据集上。
2. 项目快速启动
2.1 环境准备
确保你的系统满足以下要求:
- gcc: >=5.3
- GPU 内存: >=6.5G(测试),>=11G(训练,推荐 >=22G)
- PyTorch: >=1.0
- CUDA: >=9.2(9.0 可能会有“pybind11 errors”)
2.2 安装 PyTorch
你可以通过 pip 轻松安装 PyTorch:
pip install torch torchvision
如果遇到编译 CUDA 库时的库冲突问题,建议从源码安装 PyTorch。
2.3 编译库
克隆项目并进入项目目录:
git clone https://github.com/feihuzhang/GANet.git
cd GANet
编译库文件:
sh compile.sh
如果遇到 BN 错误,可以尝试替换 sync-bn:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext"
2.4 数据准备
下载 SceneFlow 数据集(FlyingThings3D、Driving 和 Monkaa),并将训练图像和对应的视差文件移动到指定目录:
mv all_training_images_folders $[your_dataset_PATH]/frames_finalpass/TRAIN/
mv all_corresponding_disparity_files $[your_dataset_PATH]/disparity/TRAIN/
确保以下 29 个文件夹包含在 $[your_dataset_PATH]/disparity/TRAIN/ 和 $[your_dataset_PATH]/frames_finalpass/TRAIN/ 中。
2.5 训练和预测
修改参数设置并运行训练和预测脚本:
sh train.sh
sh predict.sh
注意:crop_width 和 crop_height 必须是 48 的倍数,max_disp 必须是 12 的倍数(默认值为 192)。
3. 应用案例和最佳实践
3.1 立体匹配
GANet 在立体匹配任务中表现出色,特别是在处理复杂场景和高分辨率图像时。通过端到端的训练,GANet 能够有效地减少视差误差,提高匹配精度。
3.2 自动驾驶
在自动驾驶领域,GANet 可以用于实时立体视觉系统,帮助车辆在复杂环境中进行精确的距离感知和障碍物检测。
4. 典型生态项目
4.1 NVIDIA Apex
NVIDIA Apex 是一个用于混合精度训练和分布式训练的 PyTorch 扩展库。GANet 使用了 Apex 来优化训练过程,特别是在处理大规模数据集时。
4.2 PyTorch
PyTorch 是一个开源的深度学习框架,GANet 基于 PyTorch 构建,充分利用了其动态计算图和强大的 GPU 加速能力。
4.3 SceneFlow 数据集
SceneFlow 是一个用于立体匹配任务的大型数据集,包含了多种复杂场景和高分辨率图像。GANet 在 SceneFlow 数据集上进行了广泛的测试和验证。
通过以上步骤,你可以快速启动并使用 GANet 项目,进行立体匹配任务的训练和预测。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00