GANet 项目使用教程
1. 项目介绍
GANet(Guided Aggregation Net)是一个用于端到端立体匹配的深度学习网络。该项目将传统的立体匹配几何和优化问题转化为深度神经网络,旨在提高立体匹配的准确性和效率。GANet 通过引导聚合网络(GA-Net)来实现这一目标,该网络在多个基准数据集上表现出色,特别是在 SceneFlow、KITTI 2012 和 KITTI 2015 数据集上。
2. 项目快速启动
2.1 环境准备
确保你的系统满足以下要求:
- gcc: >=5.3
- GPU 内存: >=6.5G(测试),>=11G(训练,推荐 >=22G)
- PyTorch: >=1.0
- CUDA: >=9.2(9.0 可能会有“pybind11 errors”)
2.2 安装 PyTorch
你可以通过 pip
轻松安装 PyTorch:
pip install torch torchvision
如果遇到编译 CUDA 库时的库冲突问题,建议从源码安装 PyTorch。
2.3 编译库
克隆项目并进入项目目录:
git clone https://github.com/feihuzhang/GANet.git
cd GANet
编译库文件:
sh compile.sh
如果遇到 BN 错误,可以尝试替换 sync-bn:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext"
2.4 数据准备
下载 SceneFlow 数据集(FlyingThings3D、Driving 和 Monkaa),并将训练图像和对应的视差文件移动到指定目录:
mv all_training_images_folders $[your_dataset_PATH]/frames_finalpass/TRAIN/
mv all_corresponding_disparity_files $[your_dataset_PATH]/disparity/TRAIN/
确保以下 29 个文件夹包含在 $[your_dataset_PATH]/disparity/TRAIN/
和 $[your_dataset_PATH]/frames_finalpass/TRAIN/
中。
2.5 训练和预测
修改参数设置并运行训练和预测脚本:
sh train.sh
sh predict.sh
注意:crop_width
和 crop_height
必须是 48 的倍数,max_disp
必须是 12 的倍数(默认值为 192)。
3. 应用案例和最佳实践
3.1 立体匹配
GANet 在立体匹配任务中表现出色,特别是在处理复杂场景和高分辨率图像时。通过端到端的训练,GANet 能够有效地减少视差误差,提高匹配精度。
3.2 自动驾驶
在自动驾驶领域,GANet 可以用于实时立体视觉系统,帮助车辆在复杂环境中进行精确的距离感知和障碍物检测。
4. 典型生态项目
4.1 NVIDIA Apex
NVIDIA Apex 是一个用于混合精度训练和分布式训练的 PyTorch 扩展库。GANet 使用了 Apex 来优化训练过程,特别是在处理大规模数据集时。
4.2 PyTorch
PyTorch 是一个开源的深度学习框架,GANet 基于 PyTorch 构建,充分利用了其动态计算图和强大的 GPU 加速能力。
4.3 SceneFlow 数据集
SceneFlow 是一个用于立体匹配任务的大型数据集,包含了多种复杂场景和高分辨率图像。GANet 在 SceneFlow 数据集上进行了广泛的测试和验证。
通过以上步骤,你可以快速启动并使用 GANet 项目,进行立体匹配任务的训练和预测。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0259PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









