GANet 项目使用教程
1. 项目介绍
GANet(Guided Aggregation Net)是一个用于端到端立体匹配的深度学习网络。该项目将传统的立体匹配几何和优化问题转化为深度神经网络,旨在提高立体匹配的准确性和效率。GANet 通过引导聚合网络(GA-Net)来实现这一目标,该网络在多个基准数据集上表现出色,特别是在 SceneFlow、KITTI 2012 和 KITTI 2015 数据集上。
2. 项目快速启动
2.1 环境准备
确保你的系统满足以下要求:
- gcc: >=5.3
- GPU 内存: >=6.5G(测试),>=11G(训练,推荐 >=22G)
- PyTorch: >=1.0
- CUDA: >=9.2(9.0 可能会有“pybind11 errors”)
2.2 安装 PyTorch
你可以通过 pip 轻松安装 PyTorch:
pip install torch torchvision
如果遇到编译 CUDA 库时的库冲突问题,建议从源码安装 PyTorch。
2.3 编译库
克隆项目并进入项目目录:
git clone https://github.com/feihuzhang/GANet.git
cd GANet
编译库文件:
sh compile.sh
如果遇到 BN 错误,可以尝试替换 sync-bn:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext"
2.4 数据准备
下载 SceneFlow 数据集(FlyingThings3D、Driving 和 Monkaa),并将训练图像和对应的视差文件移动到指定目录:
mv all_training_images_folders $[your_dataset_PATH]/frames_finalpass/TRAIN/
mv all_corresponding_disparity_files $[your_dataset_PATH]/disparity/TRAIN/
确保以下 29 个文件夹包含在 $[your_dataset_PATH]/disparity/TRAIN/ 和 $[your_dataset_PATH]/frames_finalpass/TRAIN/ 中。
2.5 训练和预测
修改参数设置并运行训练和预测脚本:
sh train.sh
sh predict.sh
注意:crop_width 和 crop_height 必须是 48 的倍数,max_disp 必须是 12 的倍数(默认值为 192)。
3. 应用案例和最佳实践
3.1 立体匹配
GANet 在立体匹配任务中表现出色,特别是在处理复杂场景和高分辨率图像时。通过端到端的训练,GANet 能够有效地减少视差误差,提高匹配精度。
3.2 自动驾驶
在自动驾驶领域,GANet 可以用于实时立体视觉系统,帮助车辆在复杂环境中进行精确的距离感知和障碍物检测。
4. 典型生态项目
4.1 NVIDIA Apex
NVIDIA Apex 是一个用于混合精度训练和分布式训练的 PyTorch 扩展库。GANet 使用了 Apex 来优化训练过程,特别是在处理大规模数据集时。
4.2 PyTorch
PyTorch 是一个开源的深度学习框架,GANet 基于 PyTorch 构建,充分利用了其动态计算图和强大的 GPU 加速能力。
4.3 SceneFlow 数据集
SceneFlow 是一个用于立体匹配任务的大型数据集,包含了多种复杂场景和高分辨率图像。GANet 在 SceneFlow 数据集上进行了广泛的测试和验证。
通过以上步骤,你可以快速启动并使用 GANet 项目,进行立体匹配任务的训练和预测。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00