WeatherBenchX项目:稀疏观测数据评估指南
2025-06-19 10:36:19作者:翟萌耘Ralph
概述
在气象预报领域,评估模型预测准确性是至关重要的环节。WeatherBenchX项目提供了一套完整的工具链,用于评估网格化预报数据与稀疏地面观测数据(如METAR气象站数据)之间的差异。本文将详细介绍如何使用WeatherBenchX进行这类评估工作。
准备工作
首先需要导入必要的Python模块:
import numpy as np
from weatherbenchX import interpolations, binning, aggregation
from weatherbenchX.metrics import base as metrics_base
from weatherbenchX.metrics import deterministic
from weatherbenchX.data_loaders import sparse_parquet, xarray_loaders
数据加载与处理
定义评估变量和时间范围
variables = ['2m_temperature', '10m_wind_speed']
init_times = np.array(['2020-01-01T00', '2020-01-01T12'], dtype='datetime64[ns]')
lead_times = np.array([6, 12], dtype='timedelta64[h]').astype('timedelta64[ns]')
加载稀疏观测数据
METAR数据采用Parquet格式存储,这是一种高效的列式存储格式:
target_data_loader = sparse_parquet.METARFromParquet(
path='gs://weatherbench2/datasets/metar/metar-timeNominal-by-month/',
variables=variables,
partitioned_by='month',
time_dim='timeNominal',
add_nan_mask=True
)
target_chunk = target_data_loader.load_chunk(init_times, lead_times)
加载后的数据具有以下特点:
- 仅包含索引维度
- 初始时间和提前时间作为非维度坐标
- 包含NaN掩码处理缺失值
- 同一站点同一时间可能有多个观测值
数据预处理选项
WeatherBenchX提供了多种数据预处理选项:
dropna
:自动删除包含NaN值的记录split_variables
:按变量拆分数据集remove_duplicates
:去除重复观测
预报数据插值
创建插值器
将网格化预报数据插值到观测站点位置:
interpolation = interpolations.InterpolateToReferenceCoords(
method='nearest', # 最近邻插值方法
wrap_longitude=True # 处理经度环绕
)
加载预报数据
prediction_data_loader = xarray_loaders.PredictionsFromXarray(
path='gs://weatherbench2/datasets/hres/2016-2022-0012-64x32_equiangular_conservative.zarr',
variables=variables,
interpolation=interpolation,
)
prediction_chunk = prediction_data_loader.load_chunk(init_times, lead_times, reference=target_chunk)
评估指标计算
定义评估指标
metrics = {
'rmse': deterministic.RMSE(), # 均方根误差
'mae': deterministic.MAE(), # 平均绝对误差
}
计算统计量
statistics = metrics_base.compute_unique_statistics_for_all_metrics(
metrics, prediction_chunk, target_chunk
)
数据聚合与分析
由于提前时间不再是维度坐标,需要特殊处理:
bin_by = [binning.ByExactCoord('lead_time')] # 按提前时间分箱
aggregator = aggregation.Aggregator(
reduce_dims=['index'], # 缩减索引维度
bin_by=bin_by, # 分箱规则
masked=True # 使用掩码
)
aggregation_state = aggregator.aggregate_statistics(statistics)
技术要点解析
-
稀疏数据处理:气象站观测数据天然具有稀疏性,WeatherBenchX提供了专门的处理工具
-
数据对齐:通过插值方法确保预报数据和观测数据在空间位置上对齐
-
缺失值处理:提供了NaN掩码和自动删除两种处理方式
-
时间维度处理:针对非均匀时间观测的特殊处理方案
-
评估指标:内置多种常用气象预报评估指标
应用场景
这种评估方法特别适用于:
- 验证高分辨率区域预报模型
- 评估不同数据同化方案的效果
- 比较不同数值预报系统的性能
- 机器学习气象模型的验证
通过WeatherBenchX提供的这套工具,研究人员可以快速构建完整的气象预报评估流程,专注于科学问题本身而非数据处理细节。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
50
373

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
348
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
32
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0