ingredient-parser项目中的句子标准化处理技术解析
2025-06-20 11:56:50作者:温艾琴Wonderful
引言
在自然语言处理(NLP)领域,数据预处理是构建高效模型的关键步骤。本文将深入解析ingredient-parser项目中针对食材描述句子的标准化处理技术,这是该项目预处理流程的核心部分。
标准化处理的重要性
标准化处理是将句子中的特定特征转换为标准形式的过程,其核心目标是:
- 消除数据中可预见的变体
- 为模型提供整洁一致的数据
- 降低模型学习难度
- 提高标签分配的准确性
标准化处理流程详解
ingredient-parser项目通过PreProcessor类实现句子标准化,初始化时自动调用_normalise方法完成以下处理步骤:
1. 特殊符号标准化
破折号处理:
- 将en-dash(–)和em-dash(—)统一转换为连字符(-)
- 目的:便于数量范围的识别
2. 分数表示标准化
HTML实体分数转换:
- 将HTML实体分数(如
½)转换为Unicode形式(如½) - 使用Python标准库的
html.unescape函数实现
Unicode分数转换:
- 将Unicode分数转换为文本格式(如½→1/2)
- 特殊处理两种情况:
- 前面有连字符时:保持连接(如½-¾→1/2-3/4)
- 前面无连字符时:添加空格(如1½→1 1/2)
3. 复合分数处理
"and"连接的分数合并:
- 处理如"1 and 1/2"的复合分数
- 提前处理避免后续步骤将1/2单独处理
4. 分数标记化保护
分数特殊标记:
- 小于1的分数:1/2→#1$2
- 大于1的分数:2 3/4→2#3$4
- 目的:确保分数在分词时保持为单个token
5. 数量与单位分离
强制分隔:
- 在数量和单位间强制添加空格
- 处理连字符连接的情况(如1-cup→1 cup)
- 特殊处理"x"表示的数量(如1x, 2x)
6. 单位后缀处理
去除多余句点:
- 移除单位后的冗余句点(如tsp.→tsp)
- 仅针对训练数据中观察到的特定单位
7. 范围表达式标准化
范围格式统一:
- 识别多种范围表达形式:
- "1 to 2"
- "1- to 2-"
- "1 or 2"
- "1- or 2-"
- 统一转换为"X-Y"格式
- 确保范围保持为单个token
8. 重复单位处理
范围中单位合并:
- 处理如"5 oz - 8 oz"→"5-8 oz"
- 考虑单位同义词(如oz和ounce)
9. 数量与"x"合并
特殊数量格式:
- 合并如"1 x"→"1x"
- "0.5 x"→"0.5x"
10. 范围格式优化
空格清理:
- 移除范围连字符周围的空格
单位单数化处理
虽然单位单数化在分词后执行,但值得在此说明:
- 使用预定义的复数单位到单数形式的映射
- 记录被修改的token索引
- 模型标注后可自动恢复复数形式
调试技巧
通过设置show_debug_output=True,可以观察标准化过程的每个中间步骤,这对理解处理流程和调试非常有帮助。
结语
ingredient-parser项目的句子标准化处理展现了专业NLP工程中的精细设计,通过系统化的预处理流程,显著提升了后续模型处理的准确性和可靠性。这种处理方式不仅适用于食材解析领域,也可为其他领域的文本处理提供参考。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
Ascend Extension for PyTorch
Python
131
159
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
221
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.48 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206