LaTeX Workshop 编译后CPU占用过高问题分析与解决方案
2025-05-21 20:51:51作者:俞予舒Fleming
问题现象
在使用LaTeX Workshop扩展编译大型LaTeX文档时,部分用户会遇到编译完成后CPU占用率持续保持100%的问题。具体表现为:
- 编译过程正常完成(约10-15秒)
- 编译结束后,系统监控显示一个CPU核心持续满载
- 风扇转速明显提高,产生噪音
- 关闭VSCode/VSCodium窗口后CPU负载恢复正常
问题分析
通过对日志和用户环境的分析,可以得出以下技术见解:
-
文件解析过程:LaTeX Workshop在编译完成后会进行大量文件解析工作,包括:
- 解析.fls和.aux文件
- 建立文件依赖关系
- 更新文档结构树
- 监视文件变化
-
pgfcache影响:当文档中使用pgfcache包时,会产生大量缓存文件(位于_pgfcache0目录),这些文件会被LaTeX Workshop持续监视和解析,可能导致资源消耗增加。
-
编译配方差异:使用latexmk配方与手动指定pdflatex->bibtex->pdflatex*2配方表现不同,后者CPU负载更稳定。
解决方案
方案一:排除缓存目录解析
在VSCode/VSCodium设置中,找到"LaTeX-Workshop › LaTeX › Search › Root Files: Exclude"配置项,添加以下排除模式:
**/_pgfcache0/**
这将阻止LaTeX Workshop解析和监视pgfcache生成的临时文件。
方案二:调整编译配方
对于使用pgfcache包的项目,建议创建自定义编译配方,确保包含必要的编译选项:
- 在settings.json中添加以下配置:
"latex-workshop.latex.tools": [
{
"name": "pdflatex",
"command": "pdflatex",
"args": [
"-synctex=1",
"-interaction=nonstopmode",
"-file-line-error",
"-shell-escape",
"%DOC%"
]
}
]
- 使用明确的编译流程(pdflatex → bibtex → pdflatex ×2)而非latexmk。
方案三:优化监视设置
减少文件监视的范围和频率:
"latex-workshop.latex.watch.files.ignore": [
"**/_pgfcache0/**",
"**/*.pdf"
]
最佳实践建议
-
定期清理临时文件:编译完成后手动清理_pgfcache0目录和生成的PDF文件。
-
文档结构优化:
- 将大型文档拆分为多个子文件
- 减少不必要的文件依赖
- 避免过度使用自动生成的图表
-
性能监控:使用系统监控工具观察具体是哪个进程占用CPU资源,以便针对性优化。
-
扩展维护:保持LaTeX Workshop扩展为最新版本,以获取性能改进。
通过以上措施,大多数用户应该能够解决编译后CPU占用过高的问题,获得更流畅的LaTeX编辑体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218