【亲测免费】 WeTextProcessing: 文本规范化及逆向文本规范化解决方案
2026-01-17 09:29:33作者:齐冠琰
1. 项目介绍
WeTextProcessing 是一个功能强大的文本处理库,专注于文本规范化的正向和逆向转换。该项目由 wenet-e2e 团队维护,旨在提供高效且准确的文字转化能力,包括但不限于数字、日期时间等特殊文字的规范化和逆规范化(即从规范形式转回自然语言表达)。该工具适用于多种应用场景,如语音识别后的文本后期处理、自然语言理解系统输入前的数据预处理等。
2. 项目快速启动
安装
要使用 WeTextProcessing 库,首先确保你的环境中安装了 Python 3.x 版本。然后可以通过以下命令进行安装:
pip install WeTextProcessing
在安装过程中,Python 的包管理器将自动下载并安装最新版的 WeTextProcessing 及其依赖项。
使用示例
初始化并调用 WeTextProcessing 中提供的文本规范化(TN)和逆向文本规范化(ITN)功能。下面展示如何使用这些功能来实现中英文的规范化处理:
中文规范化示例
from itn.chinese.inverse_normalizer import InverseNormalizer
from tn.chinese.normalizer import Normalizer as ZhNormalizer
zh_tn_text = "你好 WeTextProcessing 1.0 船新版本儿 船新体验儿 简直666"
zh_itn_text = "你好 WeTextProcessing 一点零 船新版本儿 船新体验儿 简直六六六"
# 正常化处理
zh_normalizer = ZhNormalizer()
normalized_text = zh_normalizer.normalize(zh_tn_text)
print("Normalized Chinese text:", normalized_text)
# 逆向规范化处理
inverse_normalizer = InverseNormalizer()
inverted_text = inverse_normalizer.detokenize(inverse_normalizer.denormalize(normalized_text))
print("Detokenized and Denormalized Chinese text:", inverted_text)
英文规范化示例
from tn.english.normalizer import Normalizer as EnNormalizer
en_tn_text = "Hello WeTextProcessing 1.0 life is short just use wetext 666 9 and 10"
# 初始化英文规范化器
en_normalizer = EnNormalizer()
# 执行英文规范化操作
normalized_en_text = en_normalizer.normalize(en_tn_text)
print("Normalized English text:", normalized_en_text)
3. 应用案例和最佳实践
案例一:语音识别后处理
在语音识别的过程中,识别结果往往需要经过文本规范化,将数字、日期等转化为文本表述,以提高可读性和可用性。
案例二:聊天机器人优化
聊天机器人在理解用户输入时,可能遇到各种非标准的文本表示。通过规范化处理,可以提高机器人对输入的理解能力,从而更准确地回应用户的请求。
最佳实践
- 在部署 WeTextProcessing 前,建议详细了解其文档和API,以便更好地利用其全部功能。
- 对于大规模数据处理任务,考虑性能影响因素,合理设置缓存策略。
4. 典型生态项目
WeTextProcessing 作为文本处理领域的重要工具,在多个相关项目中发挥着核心作用。以下是几个典型的生态项目案例:
- 自然语言处理平台: 将 WeTextProcessing 集成到自然语言处理的工作流程中,增强对多类型文本的理解能力。
- 智能客服系统: 利用 WeTextProcessing 进行客户咨询文本的预处理和后处理,提升服务质量和用户体验。
- 机器翻译系统: 结合文本规范化功能,改善跨语言通信的准确性。
综上所述,WeTextProcessing 不仅提供了丰富的文本处理功能,同时也促进了整个技术社区的发展和创新。无论是学术研究还是商业应用,它都扮演着不可替代的角色,值得深入探索和应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137