Assimp项目LWO文件解析器中的内存访问异常问题分析
2025-05-20 20:09:55作者:滕妙奇
Assimp是一个流行的开源3D模型导入/导出库,支持多种3D文件格式。近期在项目的LWO(LightWave Object)文件解析器中发现了两个严重的内存访问异常问题,可能被恶意利用导致程序崩溃或信息泄露。
问题背景
LWO是LightWave 3D软件使用的3D模型文件格式。Assimp通过LWOImporter类实现对该格式的解析支持。在处理LWO2版本的Polygon(多边形)数据时,解析器存在两处内存安全缺陷。
问题细节分析
1. 内存对齐假设导致的数据访问异常
第一处问题位于LWOImporter::CountVertsAndFacesLWO2函数中,代码假设输入数据的结束指针是2字节对齐的,直接进行了memcpy操作:
uint16_t tmp;
memcpy(&tmp,data,sizeof(tmp));
当输入数据长度不是2的倍数时,memcpy会读取超出预期范围的数据。这种对齐假设在没有显式检查的情况下是不安全的,特别是在处理外部输入文件时。
2. 缓冲区范围验证缺失
第二处问题同样位于同一函数中,循环使用numIndices作为条件,但未验证该值是否在缓冲区有效范围内:
for (unsigned int q = 0; q < numIndices; ++q) {
ReadVSizedIntLWO2(data); // 读取变长整数
}
构造一个超大的numIndices值,可能导致解析器读取超出预期范围的数据。
问题影响
这两个问题都属于内存访问异常类型,可能导致:
- 程序异常终止
- 信息泄露
- 在特定条件下可能被利用实现非预期行为
技术深入分析
从ASAN(AddressSanitizer)报告可以看出:
- 第一处问题读取了分配区域右侧的1个字节(从27字节区域读取了28字节)
- 第二处问题读取了33字节区域外的数据
这些问题的根本原因在于:
- 对输入数据缺乏严格的边界验证
- 对数据格式的假设过于乐观
- 没有充分考虑异常输入的情况
安全建议
修复此类问题应从以下方面入手:
- 添加显式的缓冲区边界验证
- 避免对输入数据做任何假设
- 使用安全的整数运算防止溢出
- 对变长数据添加最大长度限制
对于开发者来说,使用现代C++的安全特性(如span)和静态分析工具可以帮助预防此类问题。对于用户,建议及时更新到修复后的版本。
总结
Assimp作为广泛使用的3D模型处理库,其安全性至关重要。这次发现的LWO解析器问题提醒我们,在处理复杂二进制格式时,必须格外注意内存安全。开发者应当采用防御性编程策略,对所有外部输入保持怀疑态度,并进行充分的边界验证。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.26 K
Ascend Extension for PyTorch
Python
231
264
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869