Langfuse Python SDK中设置父TraceID和SpanID的正确方法
问题背景
在使用Langfuse Python SDK进行分布式追踪时,开发者经常需要设置父TraceID和SpanID来建立调用链关系。然而在2.59.1版本中,官方文档提供的示例代码存在一个常见的Python语法错误,导致开发者无法正确设置这些参数。
错误分析
原始示例代码中,@observe(**kwargs)装饰器直接使用了未定义的kwargs变量,这是Python中典型的"name is not defined"错误。这种错误通常发生在开发者误解了Python装饰器和函数参数传递机制的情况下。
正确实现方法
要正确设置父TraceID和SpanID,需要遵循以下原则:
-
装饰器使用:
@observe装饰器不应直接接收**kwargs参数,而是应该直接装饰函数 -
函数参数设计:被装饰的函数需要包含
**kwargs参数来接收Langfuse特有的参数 -
参数传递:在调用函数时,Langfuse特有的参数需要通过
**kwargs机制传递
完整示例代码
from langfuse.decorators import langfuse_context, observe
@observe()
def process_user_request(user_id, request_data, **kwargs):
# 业务逻辑实现
pass
@observe()
def main(**kwargs):
process_user_request(
"user_id",
"request",
langfuse_observation_id="my-custom-request-id",
**kwargs
)
# 设置父TraceID的调用方式
main(
langfuse_observation_id="my-custom-request-id",
langfuse_parent_trace_id="some_existing_trace_id"
)
# 设置父SpanID的调用方式(必须同时提供父TraceID)
main(
langfuse_observation_id="my-custom-request-id",
langfuse_parent_trace_id="some_existing_trace_id",
langfuse_parent_observation_id="some_existing_span_id",
)
关键点解析
-
装饰器使用:
@observe()装饰器应该直接装饰函数,不需要也不应该传入任何参数 -
函数参数设计:
main函数和process_user_request函数都需要包含**kwargs参数,这是Python中接收任意关键字参数的惯用方式 -
参数传递链:Langfuse特有的参数(
langfuse_*)需要通过**kwargs从外层函数一直传递到内层函数 -
参数要求:当设置
langfuse_parent_observation_id(父SpanID)时,必须同时提供langfuse_parent_trace_id(父TraceID)
最佳实践建议
-
统一参数处理:建议在所有可能被
@observe装饰的函数中都添加**kwargs参数,即使当前不需要使用Langfuse特有参数 -
参数传递:在函数调用链中,确保将
**kwargs一直传递下去,不要中途丢失 -
命名规范:遵循Langfuse的参数命名规范,所有Langfuse特有参数都以
langfuse_前缀开头 -
版本兼容性:虽然本文基于2.59.1版本,但这些原则在大多数Langfuse Python SDK版本中都适用
通过遵循这些原则和最佳实践,开发者可以避免常见的参数传递错误,正确建立分布式追踪中的调用链关系。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00