Langfuse Python SDK中设置父TraceID和SpanID的正确方法
问题背景
在使用Langfuse Python SDK进行分布式追踪时,开发者经常需要设置父TraceID和SpanID来建立调用链关系。然而在2.59.1版本中,官方文档提供的示例代码存在一个常见的Python语法错误,导致开发者无法正确设置这些参数。
错误分析
原始示例代码中,@observe(**kwargs)装饰器直接使用了未定义的kwargs变量,这是Python中典型的"name is not defined"错误。这种错误通常发生在开发者误解了Python装饰器和函数参数传递机制的情况下。
正确实现方法
要正确设置父TraceID和SpanID,需要遵循以下原则:
-
装饰器使用:
@observe装饰器不应直接接收**kwargs参数,而是应该直接装饰函数 -
函数参数设计:被装饰的函数需要包含
**kwargs参数来接收Langfuse特有的参数 -
参数传递:在调用函数时,Langfuse特有的参数需要通过
**kwargs机制传递
完整示例代码
from langfuse.decorators import langfuse_context, observe
@observe()
def process_user_request(user_id, request_data, **kwargs):
# 业务逻辑实现
pass
@observe()
def main(**kwargs):
process_user_request(
"user_id",
"request",
langfuse_observation_id="my-custom-request-id",
**kwargs
)
# 设置父TraceID的调用方式
main(
langfuse_observation_id="my-custom-request-id",
langfuse_parent_trace_id="some_existing_trace_id"
)
# 设置父SpanID的调用方式(必须同时提供父TraceID)
main(
langfuse_observation_id="my-custom-request-id",
langfuse_parent_trace_id="some_existing_trace_id",
langfuse_parent_observation_id="some_existing_span_id",
)
关键点解析
-
装饰器使用:
@observe()装饰器应该直接装饰函数,不需要也不应该传入任何参数 -
函数参数设计:
main函数和process_user_request函数都需要包含**kwargs参数,这是Python中接收任意关键字参数的惯用方式 -
参数传递链:Langfuse特有的参数(
langfuse_*)需要通过**kwargs从外层函数一直传递到内层函数 -
参数要求:当设置
langfuse_parent_observation_id(父SpanID)时,必须同时提供langfuse_parent_trace_id(父TraceID)
最佳实践建议
-
统一参数处理:建议在所有可能被
@observe装饰的函数中都添加**kwargs参数,即使当前不需要使用Langfuse特有参数 -
参数传递:在函数调用链中,确保将
**kwargs一直传递下去,不要中途丢失 -
命名规范:遵循Langfuse的参数命名规范,所有Langfuse特有参数都以
langfuse_前缀开头 -
版本兼容性:虽然本文基于2.59.1版本,但这些原则在大多数Langfuse Python SDK版本中都适用
通过遵循这些原则和最佳实践,开发者可以避免常见的参数传递错误,正确建立分布式追踪中的调用链关系。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00