PostgreSQLML 容器镜像中集成 TimescaleDB 的技术实践
背景介绍
PostgreSQLML 是一个强大的机器学习扩展,允许用户在 PostgreSQL 数据库中直接执行机器学习操作。在实际生产环境中,我们经常需要将 PostgreSQLML 与其他扩展如 TimescaleDB(时序数据库扩展)结合使用。本文将详细介绍如何在 PostgreSQLML 容器镜像中成功集成 TimescaleDB 扩展。
容器镜像构建的关键步骤
构建一个包含 PostgreSQLML 和 TimescaleDB 的 Docker 镜像需要特别注意几个关键环节:
-
基础镜像选择:使用 NVIDIA CUDA 基础镜像,为后续可能的 GPU 加速计算做准备
-
依赖安装:需要安装构建工具和 PostgreSQL 开发包
- build-essential、gcc、cmake 等构建工具
- postgresql-server-dev-15 PostgreSQL 开发包
-
TimescaleDB 源码编译:
- 从 GitHub 克隆指定版本(如 2.12.2)的 TimescaleDB 源码
- 执行 bootstrap 和 make 编译安装
-
PostgreSQLML 安装:
- 添加 PostgreSQLML 官方源
- 安装 postgresml-15 和 postgresml-dashboard
-
pgvector 扩展安装:
- 克隆并编译安装 pgvector 0.5.0 版本
- 修改 vector.control 文件添加 trusted 标志
配置管理的核心问题
在最初的尝试中,开发者遇到了配置不生效的问题,具体表现为:
- 在 conf.d 目录下添加的 local_dev.conf 配置未生效
- shared_preload_libraries 设置被默认值覆盖
根本原因在于 PostgreSQL 配置加载机制:虽然配置文件中指定了 include_dir,但某些关键参数可能被主配置文件或其它机制覆盖。
解决方案
经过实践验证,最可靠的解决方案是:
-
直接修改主配置文件:避免通过 conf.d 包含的方式,直接在 postgresql.conf 中设置关键参数
-
参数设置顺序:确保 shared_preload_libraries 等关键参数在主配置文件中最后设置,以覆盖可能存在的默认值
-
容器构建时注入:在 Dockerfile 中直接修改主配置文件,而不是依赖后续的配置包含
最佳实践建议
-
配置优先级:理解 PostgreSQL 配置加载顺序,关键参数应在最后加载的配置中设置
-
扩展兼容性:测试不同扩展的组合,确保没有冲突
-
版本控制:严格指定各扩展的版本号,避免不兼容问题
-
构建优化:合理组织 Dockerfile 指令顺序,利用层缓存提高构建效率
通过这种方式,可以构建出稳定可靠的包含 PostgreSQLML 和 TimescaleDB 的容器镜像,为时序数据分析和机器学习任务提供强大支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00