PostgreSQLML 容器镜像中集成 TimescaleDB 的技术实践
背景介绍
PostgreSQLML 是一个强大的机器学习扩展,允许用户在 PostgreSQL 数据库中直接执行机器学习操作。在实际生产环境中,我们经常需要将 PostgreSQLML 与其他扩展如 TimescaleDB(时序数据库扩展)结合使用。本文将详细介绍如何在 PostgreSQLML 容器镜像中成功集成 TimescaleDB 扩展。
容器镜像构建的关键步骤
构建一个包含 PostgreSQLML 和 TimescaleDB 的 Docker 镜像需要特别注意几个关键环节:
-
基础镜像选择:使用 NVIDIA CUDA 基础镜像,为后续可能的 GPU 加速计算做准备
-
依赖安装:需要安装构建工具和 PostgreSQL 开发包
- build-essential、gcc、cmake 等构建工具
- postgresql-server-dev-15 PostgreSQL 开发包
-
TimescaleDB 源码编译:
- 从 GitHub 克隆指定版本(如 2.12.2)的 TimescaleDB 源码
- 执行 bootstrap 和 make 编译安装
-
PostgreSQLML 安装:
- 添加 PostgreSQLML 官方源
- 安装 postgresml-15 和 postgresml-dashboard
-
pgvector 扩展安装:
- 克隆并编译安装 pgvector 0.5.0 版本
- 修改 vector.control 文件添加 trusted 标志
配置管理的核心问题
在最初的尝试中,开发者遇到了配置不生效的问题,具体表现为:
- 在 conf.d 目录下添加的 local_dev.conf 配置未生效
- shared_preload_libraries 设置被默认值覆盖
根本原因在于 PostgreSQL 配置加载机制:虽然配置文件中指定了 include_dir,但某些关键参数可能被主配置文件或其它机制覆盖。
解决方案
经过实践验证,最可靠的解决方案是:
-
直接修改主配置文件:避免通过 conf.d 包含的方式,直接在 postgresql.conf 中设置关键参数
-
参数设置顺序:确保 shared_preload_libraries 等关键参数在主配置文件中最后设置,以覆盖可能存在的默认值
-
容器构建时注入:在 Dockerfile 中直接修改主配置文件,而不是依赖后续的配置包含
最佳实践建议
-
配置优先级:理解 PostgreSQL 配置加载顺序,关键参数应在最后加载的配置中设置
-
扩展兼容性:测试不同扩展的组合,确保没有冲突
-
版本控制:严格指定各扩展的版本号,避免不兼容问题
-
构建优化:合理组织 Dockerfile 指令顺序,利用层缓存提高构建效率
通过这种方式,可以构建出稳定可靠的包含 PostgreSQLML 和 TimescaleDB 的容器镜像,为时序数据分析和机器学习任务提供强大支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00