PostgreSQLML 容器镜像中集成 TimescaleDB 的技术实践
背景介绍
PostgreSQLML 是一个强大的机器学习扩展,允许用户在 PostgreSQL 数据库中直接执行机器学习操作。在实际生产环境中,我们经常需要将 PostgreSQLML 与其他扩展如 TimescaleDB(时序数据库扩展)结合使用。本文将详细介绍如何在 PostgreSQLML 容器镜像中成功集成 TimescaleDB 扩展。
容器镜像构建的关键步骤
构建一个包含 PostgreSQLML 和 TimescaleDB 的 Docker 镜像需要特别注意几个关键环节:
-
基础镜像选择:使用 NVIDIA CUDA 基础镜像,为后续可能的 GPU 加速计算做准备
-
依赖安装:需要安装构建工具和 PostgreSQL 开发包
- build-essential、gcc、cmake 等构建工具
- postgresql-server-dev-15 PostgreSQL 开发包
-
TimescaleDB 源码编译:
- 从 GitHub 克隆指定版本(如 2.12.2)的 TimescaleDB 源码
- 执行 bootstrap 和 make 编译安装
-
PostgreSQLML 安装:
- 添加 PostgreSQLML 官方源
- 安装 postgresml-15 和 postgresml-dashboard
-
pgvector 扩展安装:
- 克隆并编译安装 pgvector 0.5.0 版本
- 修改 vector.control 文件添加 trusted 标志
配置管理的核心问题
在最初的尝试中,开发者遇到了配置不生效的问题,具体表现为:
- 在 conf.d 目录下添加的 local_dev.conf 配置未生效
- shared_preload_libraries 设置被默认值覆盖
根本原因在于 PostgreSQL 配置加载机制:虽然配置文件中指定了 include_dir,但某些关键参数可能被主配置文件或其它机制覆盖。
解决方案
经过实践验证,最可靠的解决方案是:
-
直接修改主配置文件:避免通过 conf.d 包含的方式,直接在 postgresql.conf 中设置关键参数
-
参数设置顺序:确保 shared_preload_libraries 等关键参数在主配置文件中最后设置,以覆盖可能存在的默认值
-
容器构建时注入:在 Dockerfile 中直接修改主配置文件,而不是依赖后续的配置包含
最佳实践建议
-
配置优先级:理解 PostgreSQL 配置加载顺序,关键参数应在最后加载的配置中设置
-
扩展兼容性:测试不同扩展的组合,确保没有冲突
-
版本控制:严格指定各扩展的版本号,避免不兼容问题
-
构建优化:合理组织 Dockerfile 指令顺序,利用层缓存提高构建效率
通过这种方式,可以构建出稳定可靠的包含 PostgreSQLML 和 TimescaleDB 的容器镜像,为时序数据分析和机器学习任务提供强大支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









