AWS Deep Learning Containers发布TensorFlow 2.18.0 ARM64推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习工作负载。这些容器镜像支持多种深度学习框架、CPU/GPU架构以及不同的使用场景(训练或推理)。
本次发布的v1.15-tf-arm64-ec2-2.18.0-inf-cpu-py310版本主要针对TensorFlow推理场景,特别优化了ARM64架构的EC2实例使用。该镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境和TensorFlow Serving API 2.18.0版本。
镜像技术细节
这个容器镜像的核心组件包括:
-
TensorFlow Serving API 2.18.0:这是TensorFlow官方提供的用于模型部署和服务化的API,支持高性能的模型推理。
-
Python环境:基于Python 3.10构建,包含了常用的Python数据科学和机器学习库,如:
- NumPy:用于科学计算的基础库
- Cython 0.29.37:用于编写C扩展的Python库
- Protobuf 4.25.6:Google的高效数据序列化工具
- AWS CLI工具包:包括boto3、botocore等,方便与AWS服务交互
-
系统依赖:镜像中包含了必要的系统库,如:
- GCC相关工具链(libgcc-9-dev)
- C++标准库(libstdc++-9-dev)
- 开发工具(如emacs编辑器)
适用场景
这个ARM64架构的TensorFlow推理镜像特别适合以下场景:
-
成本优化的推理服务:ARM架构的EC2实例通常比x86实例更具成本效益,特别适合大规模部署的推理服务。
-
边缘计算场景:由于ARM架构在移动和嵌入式设备上的普及,使用ARM架构的容器可以更好地与边缘设备兼容。
-
Python 3.10环境需求:对于需要使用Python 3.10新特性的项目,这个镜像提供了现成的支持。
使用建议
对于想要在ARM架构EC2实例上部署TensorFlow模型的开发者,可以直接使用这个预构建的镜像,无需自己配置复杂的依赖环境。镜像已经包含了从模型服务化到AWS服务集成的全套工具链。
需要注意的是,这个镜像是专门为CPU推理优化的,如果需要GPU加速的推理,应该选择对应的GPU版本镜像。此外,由于是基于Ubuntu 20.04构建,对于需要其他操作系统基础镜像的用户,可能需要考虑其他版本。
AWS Deep Learning Containers的这种版本化发布方式,使得开发者可以精确控制生产环境中的深度学习框架版本,确保模型服务的稳定性和可重复性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00