AWS Deep Learning Containers发布TensorFlow 2.18.0 ARM64推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习工作负载。这些容器镜像支持多种深度学习框架、CPU/GPU架构以及不同的使用场景(训练或推理)。
本次发布的v1.15-tf-arm64-ec2-2.18.0-inf-cpu-py310版本主要针对TensorFlow推理场景,特别优化了ARM64架构的EC2实例使用。该镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境和TensorFlow Serving API 2.18.0版本。
镜像技术细节
这个容器镜像的核心组件包括:
-
TensorFlow Serving API 2.18.0:这是TensorFlow官方提供的用于模型部署和服务化的API,支持高性能的模型推理。
-
Python环境:基于Python 3.10构建,包含了常用的Python数据科学和机器学习库,如:
- NumPy:用于科学计算的基础库
- Cython 0.29.37:用于编写C扩展的Python库
- Protobuf 4.25.6:Google的高效数据序列化工具
- AWS CLI工具包:包括boto3、botocore等,方便与AWS服务交互
-
系统依赖:镜像中包含了必要的系统库,如:
- GCC相关工具链(libgcc-9-dev)
- C++标准库(libstdc++-9-dev)
- 开发工具(如emacs编辑器)
适用场景
这个ARM64架构的TensorFlow推理镜像特别适合以下场景:
-
成本优化的推理服务:ARM架构的EC2实例通常比x86实例更具成本效益,特别适合大规模部署的推理服务。
-
边缘计算场景:由于ARM架构在移动和嵌入式设备上的普及,使用ARM架构的容器可以更好地与边缘设备兼容。
-
Python 3.10环境需求:对于需要使用Python 3.10新特性的项目,这个镜像提供了现成的支持。
使用建议
对于想要在ARM架构EC2实例上部署TensorFlow模型的开发者,可以直接使用这个预构建的镜像,无需自己配置复杂的依赖环境。镜像已经包含了从模型服务化到AWS服务集成的全套工具链。
需要注意的是,这个镜像是专门为CPU推理优化的,如果需要GPU加速的推理,应该选择对应的GPU版本镜像。此外,由于是基于Ubuntu 20.04构建,对于需要其他操作系统基础镜像的用户,可能需要考虑其他版本。
AWS Deep Learning Containers的这种版本化发布方式,使得开发者可以精确控制生产环境中的深度学习框架版本,确保模型服务的稳定性和可重复性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









