AWS Deep Learning Containers发布TensorFlow ARM64推理镜像v1.11版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像已经过优化,可直接在AWS云平台上运行。DLC包含了主流深度学习框架如TensorFlow、PyTorch等的最新版本,以及必要的依赖库和工具,大大简化了深度学习环境的部署过程。
本次发布的v1.11版本主要针对TensorFlow推理场景,提供了基于ARM64架构的CPU优化镜像。该镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境,并集成了TensorFlow Serving API 2.18.0版本。
镜像技术细节
该DLC镜像的核心组件包括:
- 操作系统:Ubuntu 20.04 LTS
- Python版本:3.10
- TensorFlow Serving API:2.18.0
- 关键Python依赖:
- PyYAML 6.0.2(用于配置文件处理)
- AWS CLI 1.37.18(AWS命令行工具)
- Boto3 1.36.18(AWS SDK for Python)
- Protobuf 4.25.6(Google的数据序列化工具)
- Cython 0.29.37(Python的C扩展工具)
镜像中还包含了必要的系统库,如GCC编译器工具链(libgcc-9-dev和libgcc-s1)以及C++标准库(libstdc++-9-dev和libstdc++6),这些都是运行TensorFlow模型推理所需的基础环境。
应用场景
这个ARM64架构的TensorFlow推理镜像特别适合以下场景:
- 需要在基于ARM架构的AWS实例(如Graviton系列)上部署TensorFlow模型的服务
- 对成本敏感的应用场景,因为ARM实例通常比x86实例更具成本效益
- 需要轻量级推理服务的场景,CPU版本的镜像相比GPU版本更加轻量
版本兼容性
该镜像基于TensorFlow 2.18.0版本构建,这意味着它支持TensorFlow 2.x系列的所有主要特性,包括:
- SavedModel格式的模型加载和推理
- Keras模型的原生支持
- TensorFlow Lite兼容性
- 分布式推理能力
对于开发者而言,使用这个预构建的DLC镜像可以避免手动配置环境的复杂性,特别是处理ARM架构下的依赖关系问题。AWS已经对这些镜像进行了性能优化和安全性测试,确保它们在生产环境中的稳定运行。
总结
AWS Deep Learning Containers的这次更新为ARM64架构上的TensorFlow模型推理提供了开箱即用的解决方案。通过使用这些预构建的容器镜像,数据科学家和机器学习工程师可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置和依赖管理上。特别是对于已经在使用AWS Graviton实例的用户,这个优化过的TensorFlow推理镜像将提供更好的性能和成本效益。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00