首页
/ AWS Deep Learning Containers发布TensorFlow ARM64推理镜像v1.11版本

AWS Deep Learning Containers发布TensorFlow ARM64推理镜像v1.11版本

2025-07-07 14:21:40作者:盛欣凯Ernestine

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像已经过优化,可直接在AWS云平台上运行。DLC包含了主流深度学习框架如TensorFlow、PyTorch等的最新版本,以及必要的依赖库和工具,大大简化了深度学习环境的部署过程。

本次发布的v1.11版本主要针对TensorFlow推理场景,提供了基于ARM64架构的CPU优化镜像。该镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境,并集成了TensorFlow Serving API 2.18.0版本。

镜像技术细节

该DLC镜像的核心组件包括:

  • 操作系统:Ubuntu 20.04 LTS
  • Python版本:3.10
  • TensorFlow Serving API:2.18.0
  • 关键Python依赖:
    • PyYAML 6.0.2(用于配置文件处理)
    • AWS CLI 1.37.18(AWS命令行工具)
    • Boto3 1.36.18(AWS SDK for Python)
    • Protobuf 4.25.6(Google的数据序列化工具)
    • Cython 0.29.37(Python的C扩展工具)

镜像中还包含了必要的系统库,如GCC编译器工具链(libgcc-9-dev和libgcc-s1)以及C++标准库(libstdc++-9-dev和libstdc++6),这些都是运行TensorFlow模型推理所需的基础环境。

应用场景

这个ARM64架构的TensorFlow推理镜像特别适合以下场景:

  1. 需要在基于ARM架构的AWS实例(如Graviton系列)上部署TensorFlow模型的服务
  2. 对成本敏感的应用场景,因为ARM实例通常比x86实例更具成本效益
  3. 需要轻量级推理服务的场景,CPU版本的镜像相比GPU版本更加轻量

版本兼容性

该镜像基于TensorFlow 2.18.0版本构建,这意味着它支持TensorFlow 2.x系列的所有主要特性,包括:

  • SavedModel格式的模型加载和推理
  • Keras模型的原生支持
  • TensorFlow Lite兼容性
  • 分布式推理能力

对于开发者而言,使用这个预构建的DLC镜像可以避免手动配置环境的复杂性,特别是处理ARM架构下的依赖关系问题。AWS已经对这些镜像进行了性能优化和安全性测试,确保它们在生产环境中的稳定运行。

总结

AWS Deep Learning Containers的这次更新为ARM64架构上的TensorFlow模型推理提供了开箱即用的解决方案。通过使用这些预构建的容器镜像,数据科学家和机器学习工程师可以专注于模型开发和业务逻辑,而不必花费大量时间在环境配置和依赖管理上。特别是对于已经在使用AWS Graviton实例的用户,这个优化过的TensorFlow推理镜像将提供更好的性能和成本效益。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133