Label Studio导出COCO格式数据集时仅显示部分标注的解决方案
在使用Label Studio进行图像标注时,用户可能会遇到一个常见问题:当导出COCO格式数据集时,生成的JSON文件中只包含部分图像的标注信息(如仅30张),而实际上项目包含1500张图像。这种情况通常与后端机器学习模型的输出格式有关。
问题原因分析
出现这种问题的根本原因在于标注数据的格式不符合Label Studio的预期。具体来说,当后端机器学习模型返回预测结果时,如果数据结构不正确,会导致Label Studio无法正确解析所有标注。
在用户提供的代码示例中可以看到,模型返回的标注数据结构需要包含以下关键字段:
from_name:标注任务的来源名称to_name:标注目标名称(通常是"image")type:标注类型(如"rectanglelabels"表示矩形框标注)value:包含实际标注数据的字典score:标注的可信度分数
解决方案
要解决这个问题,需要确保后端模型返回的标注数据格式完全符合Label Studio的要求。以下是关键检查点:
-
标注类型匹配:确认
type字段与Label Studio项目中配置的标注类型完全一致。例如,如果是矩形框标注,应使用"rectanglelabels"。 -
数据结构完整:每个标注对象必须包含完整的结构,包括
points(坐标点)和rectanglelabels(标签类别)。 -
标签处理:确保
rectanglelabels字段的值是一个列表,即使只有一个标签也要放在列表中。 -
数据类型转换:如果使用PyTorch等框架,注意将张量数据转换为Python原生类型(如使用
.item()方法)。
最佳实践建议
-
验证数据格式:在将标注数据返回给Label Studio前,先打印几个样本检查格式是否正确。
-
统一类别映射:建立稳定的类别映射机制,确保模型输出的类别ID能正确对应到Label Studio中的标签名称。
-
错误处理:添加对未知类别的处理逻辑,如示例中的"Unknown"回退机制。
-
批量测试:在完整数据集上运行前,先用少量样本测试导出功能是否正常。
通过确保后端模型输出符合Label Studio的数据格式要求,可以避免导出COCO格式时只显示部分标注的问题,保证所有标注数据都能正确导出。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00