Label Studio项目数据导出为YOLO格式的完整解决方案
在计算机视觉项目中,Label Studio是一个广泛使用的数据标注工具。当我们需要将标注好的数据导出为YOLO格式用于目标检测模型训练时,经常会遇到两个典型问题:一是导出的YOLO格式数据不包含原始图像文件,二是上传到Label Studio的图像文件名被修改为哈希值,失去了原始文件名信息。
核心问题分析
Label Studio的YOLO/COCO格式导出功能默认只输出标注文件,不包含图像数据。这是因为Label Studio设计上更推荐使用云存储同步方式管理原始数据,而非直接通过UI上传。当用户选择UI上传方式时,系统会自动对文件名进行哈希处理,这是出于安全和管理考虑的设计。
技术解决方案
针对上述问题,我们可以使用Label Studio SDK提供的Python脚本实现完整的YOLO格式导出流程。该方案包含以下关键步骤:
-
创建导出快照:通过API与Label Studio服务端交互,创建项目数据的完整快照。
-
格式转换:利用label_studio_converter工具将JSON格式的标注数据转换为YOLO格式。
-
图像下载:从Label Studio服务器下载所有标注任务中的原始图像文件。
-
文件重组:将下载的图像文件与YOLO标注文件按照标准目录结构组织。
实现细节
完整的解决方案需要安装Label Studio SDK:
pip install git+https://github.com/heartexlabs/label-studio-sdk.git
脚本执行时需要提供两个关键参数:
- API密钥:从Label Studio用户账户页面获取
- 项目ID:需要导出的项目编号
脚本的核心功能包括:
- 自动等待导出任务完成
- 处理JSON到YOLO格式的转换
- 解析任务数据获取图像URL
- 下载并重命名图像文件
- 构建符合YOLO标准的数据目录结构
性能考量
需要注意的是,此方案需要从Label Studio服务器下载所有图像文件,对于大型数据集可能会比较耗时。如果原始数据已经存储在本地文件系统中,更高效的方案是直接从本地文件系统移动图像文件,而不是重新下载。
最佳实践建议
-
数据管理策略:优先考虑使用云存储同步方式而非UI上传,这样可以保留原始文件名并简化数据管理流程。
-
自动化流程:对于频繁的数据导出需求,建议将此脚本集成到CI/CD流程中,实现自动化的数据准备管道。
-
版本控制:定期创建导出快照,便于追踪数据集的版本变化和模型性能波动。
通过这套完整的解决方案,用户可以轻松地将Label Studio中的标注数据转换为可直接用于YOLO模型训练的标准格式,大大简化了计算机视觉项目的数据准备工作。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00