InfiniTAM 开源项目教程
1. 项目介绍
InfiniTAM 是一个用于体积深度图像集成的框架。它旨在通过集成来自深度传感器的图像数据,实现大规模的三维重建。InfiniTAM 支持多种深度传感器,并且可以通过 CUDA 加速实现实时处理。该项目由牛津大学机器人研究组开发和维护,主要贡献者包括 Victor Adrian Prisacariu、Olaf Kaehler 等人。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统满足以下要求:
- cmake:版本 2.8.10.2 或 3.2.3 以上。
- OpenGL / GLUT:freeglut 2.8.0 或 3.0.0 以上。
- CUDA:版本 6.0 或 7.0 以上(可选,但推荐)。
- OpenNI:版本 2.2.0.33 以上(可选)。
- libpng:版本 1.6 以上(可选)。
- FFMPEG:版本 2.8.6 以上(可选)。
- librealsense:版本 2016-MAR-22 以上(可选)。
2.2 编译项目
-
克隆项目仓库:
git clone https://github.com/victorprad/InfiniTAM.git cd InfiniTAM
-
创建并进入构建目录:
mkdir build cd build
-
运行 cmake 配置:
cmake .. -DOPEN_NI_ROOT=/path/to/OpenNI2/
-
编译项目:
make
2.3 运行示例程序
编译完成后,你可以在 build
目录下找到 InfiniTAM
可执行文件。运行以下命令启动示例程序:
./InfiniTAM Teddy/calib.txt
如果编译时包含了 OpenNI 支持,程序将直接从连接的深度传感器获取数据进行实时重建。如果没有 OpenNI 支持,你可以使用离线数据进行处理:
./InfiniTAM Teddy/calib.txt Teddy/Frames/%04i.ppm Teddy/Frames/%04i.pgm
3. 应用案例和最佳实践
3.1 实时三维重建
InfiniTAM 最常见的应用场景是实时三维重建。通过连接支持 OpenNI 的深度传感器(如 Kinect),InfiniTAM 可以实时捕获深度图像并进行体积集成,生成高质量的三维模型。
3.2 离线数据处理
在没有实时传感器的情况下,InfiniTAM 也可以用于处理预先捕获的深度图像序列。用户可以将图像序列和校准文件作为输入,生成三维模型。
3.3 大规模场景重建
InfiniTAM 支持大规模场景的重建,通过 CUDA 加速,可以在高性能 GPU 上实现快速处理。这对于需要高精度和高效率的应用场景(如机器人导航、增强现实等)非常有用。
4. 典型生态项目
4.1 OpenNI
OpenNI 是一个开源的 API 和中间件,用于捕获和处理来自深度传感器的图像数据。InfiniTAM 依赖 OpenNI 来获取实时深度图像数据。
4.2 CUDA
CUDA 是 NVIDIA 提供的并行计算平台和编程模型,用于在 GPU 上进行高性能计算。InfiniTAM 使用 CUDA 加速体积集成过程,显著提高处理速度。
4.3 librealsense
librealsense 是 Intel 提供的用于访问 RealSense 深度传感器的库。InfiniTAM 可以通过 librealsense 支持 Intel RealSense 摄像头,扩展其应用范围。
通过这些生态项目的支持,InfiniTAM 能够实现更广泛的应用和更高的性能。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04