首页
/ InfiniTAM 开源项目教程

InfiniTAM 开源项目教程

2024-10-10 16:52:13作者:董斯意

1. 项目介绍

InfiniTAM 是一个用于体积深度图像集成的框架。它旨在通过集成来自深度传感器的图像数据,实现大规模的三维重建。InfiniTAM 支持多种深度传感器,并且可以通过 CUDA 加速实现实时处理。该项目由牛津大学机器人研究组开发和维护,主要贡献者包括 Victor Adrian Prisacariu、Olaf Kaehler 等人。

2. 项目快速启动

2.1 环境准备

在开始之前,确保你的系统满足以下要求:

  • cmake:版本 2.8.10.2 或 3.2.3 以上。
  • OpenGL / GLUT:freeglut 2.8.0 或 3.0.0 以上。
  • CUDA:版本 6.0 或 7.0 以上(可选,但推荐)。
  • OpenNI:版本 2.2.0.33 以上(可选)。
  • libpng:版本 1.6 以上(可选)。
  • FFMPEG:版本 2.8.6 以上(可选)。
  • librealsense:版本 2016-MAR-22 以上(可选)。

2.2 编译项目

  1. 克隆项目仓库:

    git clone https://github.com/victorprad/InfiniTAM.git
    cd InfiniTAM
    
  2. 创建并进入构建目录:

    mkdir build
    cd build
    
  3. 运行 cmake 配置:

    cmake .. -DOPEN_NI_ROOT=/path/to/OpenNI2/
    
  4. 编译项目:

    make
    

2.3 运行示例程序

编译完成后,你可以在 build 目录下找到 InfiniTAM 可执行文件。运行以下命令启动示例程序:

./InfiniTAM Teddy/calib.txt

如果编译时包含了 OpenNI 支持,程序将直接从连接的深度传感器获取数据进行实时重建。如果没有 OpenNI 支持,你可以使用离线数据进行处理:

./InfiniTAM Teddy/calib.txt Teddy/Frames/%04i.ppm Teddy/Frames/%04i.pgm

3. 应用案例和最佳实践

3.1 实时三维重建

InfiniTAM 最常见的应用场景是实时三维重建。通过连接支持 OpenNI 的深度传感器(如 Kinect),InfiniTAM 可以实时捕获深度图像并进行体积集成,生成高质量的三维模型。

3.2 离线数据处理

在没有实时传感器的情况下,InfiniTAM 也可以用于处理预先捕获的深度图像序列。用户可以将图像序列和校准文件作为输入,生成三维模型。

3.3 大规模场景重建

InfiniTAM 支持大规模场景的重建,通过 CUDA 加速,可以在高性能 GPU 上实现快速处理。这对于需要高精度和高效率的应用场景(如机器人导航、增强现实等)非常有用。

4. 典型生态项目

4.1 OpenNI

OpenNI 是一个开源的 API 和中间件,用于捕获和处理来自深度传感器的图像数据。InfiniTAM 依赖 OpenNI 来获取实时深度图像数据。

4.2 CUDA

CUDA 是 NVIDIA 提供的并行计算平台和编程模型,用于在 GPU 上进行高性能计算。InfiniTAM 使用 CUDA 加速体积集成过程,显著提高处理速度。

4.3 librealsense

librealsense 是 Intel 提供的用于访问 RealSense 深度传感器的库。InfiniTAM 可以通过 librealsense 支持 Intel RealSense 摄像头,扩展其应用范围。

通过这些生态项目的支持,InfiniTAM 能够实现更广泛的应用和更高的性能。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5