Spectrum CSS Swatch组件8.0.0版本发布解析
Spectrum CSS是Adobe开源的一套设计系统CSS实现,它为Web应用提供了一套完整的UI组件库。Swatch(色板)组件是其中用于展示颜色样本的重要基础组件。本次8.0.0大版本更新标志着Spectrum CSS向Spectrum 2设计系统的过渡阶段,引入了"Spectrum 2 Foundations"架构。
核心变更解析
设计系统桥梁架构
8.0.0版本最大的技术突破是建立了Spectrum 1(S1)和Spectrum 2(S2)设计系统之间的桥梁。这种"Foundations"架构不是完整的S2组件迁移,而是通过系统层(system layer)将组件级token重新映射到适当的token数据集,使组件能够在S1、Express和S2三种设计风格间灵活切换。
开发者现在可以通过简单的CSS类切换来改变组件外观:
.spectrum--legacy对应S1设计风格.spectrum--express对应Express设计风格- 默认状态则对应S2 Foundations风格
版本兼容性要求
要正确显示S2风格,必须搭配使用@spectrum-css/tokens v16或更高版本。如果需要保持S1或Express风格,则需要继续使用@spectrum-css/tokens v14.x或v15.x版本。
文件结构调整
新版本对CSS文件结构进行了优化:
index.css:包含所有基础样式和S2 Foundations的系统映射index-base.css:仅包含基础样式,需要配合主题文件使用index-theme.css:主题样式文件
这种结构分离使得按需加载成为可能,开发者可以根据实际需求选择加载完整的样式包或仅加载必要的部分。
技术细节优化
废弃内容清理
8.0.0版本清理了以下不再维护的内容:
- 移除了
metadata文件夹及其内容 - 移除了已废弃的
index-vars.css文件
组件元数据现在统一存放在dist/metadata.json中,包含了选择器、修饰符等关键信息。
依赖项更新
本次更新同步升级了相关依赖:
@spectrum-css/tokens升级至16.0.0@spectrum-css/opacitycheckerboard升级至4.0.0
开发者建议
对于不同场景的开发者,我们建议:
- 仅需S2 Foundations样式:直接使用
index.css - 仅需S1或Express样式:使用
index-base.css配合对应的主题文件 - 需要动态切换设计风格:加载
index-base.css和index-theme.css,通过上下文类切换风格
值得注意的是,这个版本主要用于Spectrum Web Components 1.x的支持。如果需要完整的S2设计实现,建议探索next标签的发布版本。
总结
Spectrum CSS Swatch 8.0.0版本的发布,通过创新的"Foundations"架构,为设计系统的平滑过渡提供了技术保障。这种渐进式的迁移策略既保证了现有项目的稳定性,又为未来升级预留了空间,体现了Adobe设计系统团队对开发者体验的深思熟虑。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00