SDV项目中日期范围扩展与类别约束的技术实现
在数据分析与建模过程中,我们经常需要生成符合真实数据特征的合成数据。SDV(Synthetic Data Vault)作为一款优秀的Python库,能够帮助我们实现这一目标。然而,在实际应用中,我们可能会遇到一些特殊需求,比如需要生成超出原始数据范围的日期值,或者需要严格保持某些字段之间的业务逻辑关系。本文将深入探讨这些技术挑战及其解决方案。
日期范围扩展的实现方法
在实际业务场景中,原始数据集可能只包含部分时间段的数据,而我们希望生成的合成数据能够覆盖更完整的时间周期。例如,原始数据可能只包含某几周的数据,而我们希望生成全年52周的合成数据。
SDV默认会学习原始数据的分布特征,包括数值范围。这意味着默认情况下,合成数据不会超出原始数据的范围。要实现范围扩展,我们可以采用以下技术方案:
-
参数调整法:通过设置
enforce_min_max_values=False和default_distribution='norm'参数,允许合成器生成超出原始范围的值。这种方法理论上可行,但在实践中可能需要生成大量数据才能获得期望的范围值。 -
数据增强法:更可靠的做法是在原始数据中添加一些边界值或虚拟数据点,明确告诉合成器我们期望的范围。例如,可以添加第1周和第52周的虚拟数据,即使这些周在原始数据中不存在。
类别与数值的关联约束
另一个常见需求是保持分类字段与数值字段之间的业务逻辑关系。例如,在费用数据中,"火车"类别的费用值应该有特定的范围,与"飞机"类别的费用值范围不同。
SDV默认会学习字段间的相关性,但为了确保严格的业务规则,我们需要使用约束条件。SDV Enterprise版本提供了MixedScales约束,可以精确控制不同类别对应的数值范围。对于开源版本用户,可以考虑以下替代方案:
-
数据预处理:将数据按类别拆分,为每个类别单独训练合成器。这样可以确保每个类别的数值特征得到保持。
-
后处理方法:先生成合成数据,然后根据类别对数值字段进行范围修正。这种方法虽然不够优雅,但在简单场景下可以工作。
实践建议
-
对于时间字段,建议优先考虑数据增强法,因为它能提供更可控的结果。
-
当处理类别与数值的关联时,评估业务规则的严格程度。如果允许一定灵活性,SDV的默认行为可能已经足够;如果需要严格遵守业务规则,则需要考虑约束或后处理。
-
在生成超出原始范围的数据时,要注意这些数据的质量可能不如范围内的数据,因为它们本质上是基于模型的推断而非学习。
通过理解这些技术细节和解决方案,数据工程师可以更有效地利用SDV生成符合业务需求的合成数据,为后续的分析和建模工作奠定良好基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00