SDV项目中日期范围扩展与类别约束的技术实现
在数据分析与建模过程中,我们经常需要生成符合真实数据特征的合成数据。SDV(Synthetic Data Vault)作为一款优秀的Python库,能够帮助我们实现这一目标。然而,在实际应用中,我们可能会遇到一些特殊需求,比如需要生成超出原始数据范围的日期值,或者需要严格保持某些字段之间的业务逻辑关系。本文将深入探讨这些技术挑战及其解决方案。
日期范围扩展的实现方法
在实际业务场景中,原始数据集可能只包含部分时间段的数据,而我们希望生成的合成数据能够覆盖更完整的时间周期。例如,原始数据可能只包含某几周的数据,而我们希望生成全年52周的合成数据。
SDV默认会学习原始数据的分布特征,包括数值范围。这意味着默认情况下,合成数据不会超出原始数据的范围。要实现范围扩展,我们可以采用以下技术方案:
-
参数调整法:通过设置
enforce_min_max_values=False和default_distribution='norm'参数,允许合成器生成超出原始范围的值。这种方法理论上可行,但在实践中可能需要生成大量数据才能获得期望的范围值。 -
数据增强法:更可靠的做法是在原始数据中添加一些边界值或虚拟数据点,明确告诉合成器我们期望的范围。例如,可以添加第1周和第52周的虚拟数据,即使这些周在原始数据中不存在。
类别与数值的关联约束
另一个常见需求是保持分类字段与数值字段之间的业务逻辑关系。例如,在费用数据中,"火车"类别的费用值应该有特定的范围,与"飞机"类别的费用值范围不同。
SDV默认会学习字段间的相关性,但为了确保严格的业务规则,我们需要使用约束条件。SDV Enterprise版本提供了MixedScales约束,可以精确控制不同类别对应的数值范围。对于开源版本用户,可以考虑以下替代方案:
-
数据预处理:将数据按类别拆分,为每个类别单独训练合成器。这样可以确保每个类别的数值特征得到保持。
-
后处理方法:先生成合成数据,然后根据类别对数值字段进行范围修正。这种方法虽然不够优雅,但在简单场景下可以工作。
实践建议
-
对于时间字段,建议优先考虑数据增强法,因为它能提供更可控的结果。
-
当处理类别与数值的关联时,评估业务规则的严格程度。如果允许一定灵活性,SDV的默认行为可能已经足够;如果需要严格遵守业务规则,则需要考虑约束或后处理。
-
在生成超出原始范围的数据时,要注意这些数据的质量可能不如范围内的数据,因为它们本质上是基于模型的推断而非学习。
通过理解这些技术细节和解决方案,数据工程师可以更有效地利用SDV生成符合业务需求的合成数据,为后续的分析和建模工作奠定良好基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00