Unity Netcode for GameObjects中玩家对象销毁导致的观察者丢失问题分析
问题背景
在Unity Netcode for GameObjects (NGO) 2.0.0-pre.4版本中,开发人员发现了一个与网络对象观察者管理相关的重要问题。当客户端玩家对象(PlayerObject)被销毁(Destroy)而非反生成(Despawn)时,会导致该客户端从所有其他网络对象的观察者列表中移除,进而无法接收这些对象的RPC调用和NetworkVariable更新。
问题现象
具体表现为:
- 当主机(Host)销毁某个客户端的玩家对象时
- 该客户端会被从所有它正在观察的网络对象的观察者列表中移除
- 导致该客户端无法接收这些网络对象的后续RPC调用和NetworkVariable更新
- 在1.11版本中不存在此问题,属于2.0.0-pre.4版本的回归问题
技术分析
问题的根源在于NetworkSpawnManager.cs文件中一段特殊的处理逻辑。这段代码原本是为了临时解决客户端连接/断开时的观察者管理问题而添加的,但却带来了新的副作用。
关键问题代码段:
if (networkObject.IsPlayerObject && !networkObject.IsOwner && networkObject.OwnerClientId != NetworkManager.LocalClientId)
{
foreach (var netObject in SpawnedObjects)
{
if (netObject.Value.Observers.Contains(networkObject.OwnerClientId))
{
netObject.Value.Observers.Remove(networkObject.OwnerClientId);
}
}
}
这段代码会在玩家对象被销毁时,将该玩家从所有网络对象的观察者列表中移除。虽然解决了某些特定场景下的问题,但却破坏了正常的网络同步机制。
解决方案
官方已经确认这是一个需要修复的问题,并提供了临时解决方案:
-
临时解决方案:从代码中移除上述问题代码段,可以立即解决观察者丢失的问题。
-
官方修复:开发团队正在准备一个完整的修复方案,包括添加相应的测试用例,以确保此类问题不会在未来版本中再次出现。
最佳实践建议
在等待官方修复的同时,开发者可以采取以下措施避免此问题:
-
优先使用Despawn而非Destroy:对于网络对象,特别是玩家对象,尽量使用NetworkObject的Despawn方法而非Unity的Destroy方法。
-
自定义观察者管理:如果需要精细控制观察者列表,可以考虑实现自定义的观察者管理逻辑。
-
版本选择:如果项目对稳定性要求较高,可以考虑暂时使用1.11版本,等待2.0.0的稳定版本发布。
总结
网络游戏开发中,观察者模式是实现高效同步的关键机制。Unity Netcode for GameObjects的这一问题提醒我们,在网络对象生命周期管理中需要特别注意观察者列表的维护。开发者应当理解网络对象销毁与反生成的区别,并在适当的时候选择合适的对象管理方式。
官方团队已经确认此问题并着手修复,预计在未来的版本更新中会包含完整的解决方案。在此期间,开发者可以采用上述临时解决方案或变通方法来规避此问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00