在Actions Runner Controller中解决DinD模式Runner无法启动的问题
问题背景
在使用GitHub Actions Runner Controller(ARC)部署自托管Runner时,用户尝试配置Docker-in-Docker(DinD)模式运行器时遇到了问题。Runner虽然成功注册到GitHub,但在执行作业时会卡在等待状态,无法正常运行。
根本原因分析
通过日志检查发现,主要存在两个关键问题:
-
配置冲突:用户同时启用了
containerMode和手动扩展的Pod规范,导致Kubernetes在创建Pod时检测到重复的卷名称和初始化容器名称。 -
网络配置问题:DinD容器需要特定的iptables配置才能正常工作,在某些平台上需要显式启用传统iptables支持。
解决方案
配置修正
正确的做法是只使用扩展的Pod规范,而不启用containerMode。以下是推荐的配置示例:
template:
spec:
initContainers:
- name: init-dind-externals
image: ghcr.io/actions/actions-runner:latest
command: ['cp', '-r', '-v', '/home/runner/externals/.', '/home/runner/tmpDir/']
volumeMounts:
- name: dind-externals
mountPath: /home/runner/tmpDir
containers:
- name: runner
image: ghcr.io/actions/actions-runner:latest
command: ['/home/runner/run.sh']
env:
- name: DOCKER_HOST
value: unix:///run/docker/docker.sock
volumeMounts:
- name: work
mountPath: /home/runner/_work
- name: dind-sock
mountPath: /run/docker
readOnly: true
- name: dind
image: docker:dind
args:
- dockerd
- --host=unix:///run/docker/docker.sock
- --group=$(DOCKER_GROUP_GID)
env:
- name: DOCKER_GROUP_GID
value: '123'
- name: DOCKER_IPTABLES_LEGACY
value: '1'
resources:
requests:
memory: "500Mi"
cpu: "300m"
limits:
memory: "500Mi"
cpu: "300m"
securityContext:
privileged: true
volumeMounts:
- name: work
mountPath: /home/runner/_work
- name: dind-sock
mountPath: /run/docker
- name: dind-externals
mountPath: /home/runner/externals
volumes:
- name: work
emptyDir: {}
- name: dind-sock
emptyDir: {}
- name: dind-externals
emptyDir: {}
关键配置说明
-
Docker套接字路径:使用
/run/docker/docker.sock而非传统的/var/run/docker.sock路径 -
iptables传统模式:必须设置环境变量
DOCKER_IPTABLES_LEGACY=1,这是DinD在某些平台上正常工作的关键 -
资源限制:为DinD容器设置适当的内存和CPU限制,防止资源耗尽
-
特权模式:DinD容器需要特权模式才能正常工作
最佳实践建议
-
避免配置重复:不要同时使用
containerMode和手动扩展的Pod规范 -
资源监控:密切监控DinD容器的资源使用情况,根据实际负载调整限制
-
安全考虑:特权容器存在安全风险,应确保Runner部署在适当隔离的环境中
-
版本兼容性:定期检查Runner和DinD镜像的版本兼容性
总结
通过正确配置DinD模式的Runner,可以实现在Kubernetes集群中安全高效地运行需要Docker支持的GitHub Actions工作流。关键在于避免配置冲突,并确保网络设置正确,特别是iptables的兼容性设置。遵循上述建议,可以显著提高Runner的稳定性和可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00