在Actions Runner Controller中解决DinD模式Runner无法启动的问题
问题背景
在使用GitHub Actions Runner Controller(ARC)部署自托管Runner时,用户尝试配置Docker-in-Docker(DinD)模式运行器时遇到了问题。Runner虽然成功注册到GitHub,但在执行作业时会卡在等待状态,无法正常运行。
根本原因分析
通过日志检查发现,主要存在两个关键问题:
-
配置冲突:用户同时启用了
containerMode和手动扩展的Pod规范,导致Kubernetes在创建Pod时检测到重复的卷名称和初始化容器名称。 -
网络配置问题:DinD容器需要特定的iptables配置才能正常工作,在某些平台上需要显式启用传统iptables支持。
解决方案
配置修正
正确的做法是只使用扩展的Pod规范,而不启用containerMode。以下是推荐的配置示例:
template:
spec:
initContainers:
- name: init-dind-externals
image: ghcr.io/actions/actions-runner:latest
command: ['cp', '-r', '-v', '/home/runner/externals/.', '/home/runner/tmpDir/']
volumeMounts:
- name: dind-externals
mountPath: /home/runner/tmpDir
containers:
- name: runner
image: ghcr.io/actions/actions-runner:latest
command: ['/home/runner/run.sh']
env:
- name: DOCKER_HOST
value: unix:///run/docker/docker.sock
volumeMounts:
- name: work
mountPath: /home/runner/_work
- name: dind-sock
mountPath: /run/docker
readOnly: true
- name: dind
image: docker:dind
args:
- dockerd
- --host=unix:///run/docker/docker.sock
- --group=$(DOCKER_GROUP_GID)
env:
- name: DOCKER_GROUP_GID
value: '123'
- name: DOCKER_IPTABLES_LEGACY
value: '1'
resources:
requests:
memory: "500Mi"
cpu: "300m"
limits:
memory: "500Mi"
cpu: "300m"
securityContext:
privileged: true
volumeMounts:
- name: work
mountPath: /home/runner/_work
- name: dind-sock
mountPath: /run/docker
- name: dind-externals
mountPath: /home/runner/externals
volumes:
- name: work
emptyDir: {}
- name: dind-sock
emptyDir: {}
- name: dind-externals
emptyDir: {}
关键配置说明
-
Docker套接字路径:使用
/run/docker/docker.sock而非传统的/var/run/docker.sock路径 -
iptables传统模式:必须设置环境变量
DOCKER_IPTABLES_LEGACY=1,这是DinD在某些平台上正常工作的关键 -
资源限制:为DinD容器设置适当的内存和CPU限制,防止资源耗尽
-
特权模式:DinD容器需要特权模式才能正常工作
最佳实践建议
-
避免配置重复:不要同时使用
containerMode和手动扩展的Pod规范 -
资源监控:密切监控DinD容器的资源使用情况,根据实际负载调整限制
-
安全考虑:特权容器存在安全风险,应确保Runner部署在适当隔离的环境中
-
版本兼容性:定期检查Runner和DinD镜像的版本兼容性
总结
通过正确配置DinD模式的Runner,可以实现在Kubernetes集群中安全高效地运行需要Docker支持的GitHub Actions工作流。关键在于避免配置冲突,并确保网络设置正确,特别是iptables的兼容性设置。遵循上述建议,可以显著提高Runner的稳定性和可靠性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00