在Actions Runner Controller中解决DinD模式Runner无法启动的问题
问题背景
在使用GitHub Actions Runner Controller(ARC)部署自托管Runner时,用户尝试配置Docker-in-Docker(DinD)模式运行器时遇到了问题。Runner虽然成功注册到GitHub,但在执行作业时会卡在等待状态,无法正常运行。
根本原因分析
通过日志检查发现,主要存在两个关键问题:
-
配置冲突:用户同时启用了
containerMode
和手动扩展的Pod规范,导致Kubernetes在创建Pod时检测到重复的卷名称和初始化容器名称。 -
网络配置问题:DinD容器需要特定的iptables配置才能正常工作,在某些平台上需要显式启用传统iptables支持。
解决方案
配置修正
正确的做法是只使用扩展的Pod规范,而不启用containerMode
。以下是推荐的配置示例:
template:
spec:
initContainers:
- name: init-dind-externals
image: ghcr.io/actions/actions-runner:latest
command: ['cp', '-r', '-v', '/home/runner/externals/.', '/home/runner/tmpDir/']
volumeMounts:
- name: dind-externals
mountPath: /home/runner/tmpDir
containers:
- name: runner
image: ghcr.io/actions/actions-runner:latest
command: ['/home/runner/run.sh']
env:
- name: DOCKER_HOST
value: unix:///run/docker/docker.sock
volumeMounts:
- name: work
mountPath: /home/runner/_work
- name: dind-sock
mountPath: /run/docker
readOnly: true
- name: dind
image: docker:dind
args:
- dockerd
- --host=unix:///run/docker/docker.sock
- --group=$(DOCKER_GROUP_GID)
env:
- name: DOCKER_GROUP_GID
value: '123'
- name: DOCKER_IPTABLES_LEGACY
value: '1'
resources:
requests:
memory: "500Mi"
cpu: "300m"
limits:
memory: "500Mi"
cpu: "300m"
securityContext:
privileged: true
volumeMounts:
- name: work
mountPath: /home/runner/_work
- name: dind-sock
mountPath: /run/docker
- name: dind-externals
mountPath: /home/runner/externals
volumes:
- name: work
emptyDir: {}
- name: dind-sock
emptyDir: {}
- name: dind-externals
emptyDir: {}
关键配置说明
-
Docker套接字路径:使用
/run/docker/docker.sock
而非传统的/var/run/docker.sock
路径 -
iptables传统模式:必须设置环境变量
DOCKER_IPTABLES_LEGACY=1
,这是DinD在某些平台上正常工作的关键 -
资源限制:为DinD容器设置适当的内存和CPU限制,防止资源耗尽
-
特权模式:DinD容器需要特权模式才能正常工作
最佳实践建议
-
避免配置重复:不要同时使用
containerMode
和手动扩展的Pod规范 -
资源监控:密切监控DinD容器的资源使用情况,根据实际负载调整限制
-
安全考虑:特权容器存在安全风险,应确保Runner部署在适当隔离的环境中
-
版本兼容性:定期检查Runner和DinD镜像的版本兼容性
总结
通过正确配置DinD模式的Runner,可以实现在Kubernetes集群中安全高效地运行需要Docker支持的GitHub Actions工作流。关键在于避免配置冲突,并确保网络设置正确,特别是iptables的兼容性设置。遵循上述建议,可以显著提高Runner的稳定性和可靠性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









