在Actions Runner Controller中解决DinD模式Runner无法启动的问题
问题背景
在使用GitHub Actions Runner Controller(ARC)部署自托管Runner时,用户尝试配置Docker-in-Docker(DinD)模式运行器时遇到了问题。Runner虽然成功注册到GitHub,但在执行作业时会卡在等待状态,无法正常运行。
根本原因分析
通过日志检查发现,主要存在两个关键问题:
-
配置冲突:用户同时启用了
containerMode和手动扩展的Pod规范,导致Kubernetes在创建Pod时检测到重复的卷名称和初始化容器名称。 -
网络配置问题:DinD容器需要特定的iptables配置才能正常工作,在某些平台上需要显式启用传统iptables支持。
解决方案
配置修正
正确的做法是只使用扩展的Pod规范,而不启用containerMode。以下是推荐的配置示例:
template:
spec:
initContainers:
- name: init-dind-externals
image: ghcr.io/actions/actions-runner:latest
command: ['cp', '-r', '-v', '/home/runner/externals/.', '/home/runner/tmpDir/']
volumeMounts:
- name: dind-externals
mountPath: /home/runner/tmpDir
containers:
- name: runner
image: ghcr.io/actions/actions-runner:latest
command: ['/home/runner/run.sh']
env:
- name: DOCKER_HOST
value: unix:///run/docker/docker.sock
volumeMounts:
- name: work
mountPath: /home/runner/_work
- name: dind-sock
mountPath: /run/docker
readOnly: true
- name: dind
image: docker:dind
args:
- dockerd
- --host=unix:///run/docker/docker.sock
- --group=$(DOCKER_GROUP_GID)
env:
- name: DOCKER_GROUP_GID
value: '123'
- name: DOCKER_IPTABLES_LEGACY
value: '1'
resources:
requests:
memory: "500Mi"
cpu: "300m"
limits:
memory: "500Mi"
cpu: "300m"
securityContext:
privileged: true
volumeMounts:
- name: work
mountPath: /home/runner/_work
- name: dind-sock
mountPath: /run/docker
- name: dind-externals
mountPath: /home/runner/externals
volumes:
- name: work
emptyDir: {}
- name: dind-sock
emptyDir: {}
- name: dind-externals
emptyDir: {}
关键配置说明
-
Docker套接字路径:使用
/run/docker/docker.sock而非传统的/var/run/docker.sock路径 -
iptables传统模式:必须设置环境变量
DOCKER_IPTABLES_LEGACY=1,这是DinD在某些平台上正常工作的关键 -
资源限制:为DinD容器设置适当的内存和CPU限制,防止资源耗尽
-
特权模式:DinD容器需要特权模式才能正常工作
最佳实践建议
-
避免配置重复:不要同时使用
containerMode和手动扩展的Pod规范 -
资源监控:密切监控DinD容器的资源使用情况,根据实际负载调整限制
-
安全考虑:特权容器存在安全风险,应确保Runner部署在适当隔离的环境中
-
版本兼容性:定期检查Runner和DinD镜像的版本兼容性
总结
通过正确配置DinD模式的Runner,可以实现在Kubernetes集群中安全高效地运行需要Docker支持的GitHub Actions工作流。关键在于避免配置冲突,并确保网络设置正确,特别是iptables的兼容性设置。遵循上述建议,可以显著提高Runner的稳定性和可靠性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00