在actions-runner-controller中配置Runner Pod资源请求的最佳实践
2025-06-08 15:57:53作者:柯茵沙
actions-runner-controller作为GitHub Actions自托管运行器的管理工具,其Helm chart提供了灵活的方式来配置Runner Pod的资源请求和限制。本文将详细介绍如何正确配置这些参数,确保Runner和dind容器都能获得足够的资源运行。
资源请求配置的重要性
在Kubernetes环境中,Pod中的每个容器都需要明确定义资源请求(request)和限制(limit)。资源请求告诉调度器容器运行所需的最小资源量,而限制则防止容器使用过多资源。如果没有正确配置,可能会导致以下问题:
- Runner容器运行但dind(Docker in Docker)容器无法启动
- 节点资源不足导致Pod被驱逐
- 资源竞争导致构建过程变慢或失败
配置Runner Pod资源
actions-runner-controller的Helm chart提供了两种方式来配置Runner Pod:
1. 使用模板模式(Template Mode)
这是最灵活的配置方式,允许用户完全自定义PodSpec。在values.yaml中,可以通过template
字段定义完整的Pod规范:
template:
spec:
containers:
- name: runner
resources:
requests:
cpu: "500m"
memory: "1Gi"
limits:
cpu: "1"
memory: "2Gi"
2. 使用容器模式(Container Mode)
容器模式提供了开箱即用的简化配置,适合基本使用场景。但对于需要精细控制资源的情况,建议切换到模板模式。
典型资源配置建议
对于同时运行Runner和dind容器的场景,建议配置如下资源:
-
Runner容器:
- 请求:至少500m CPU和1Gi内存
- 限制:1 CPU和2Gi内存
-
dind容器:
- 请求:至少1 CPU和2Gi内存
- 限制:2 CPU和4Gi内存
配置示例
完整的values.yaml配置示例:
template:
spec:
containers:
- name: runner
resources:
requests:
cpu: "500m"
memory: "1Gi"
limits:
cpu: "1"
memory: "2Gi"
- name: dind
resources:
requests:
cpu: "1"
memory: "2Gi"
limits:
cpu: "2"
memory: "4Gi"
监控与调整
配置资源后,应持续监控Pod的资源使用情况:
- 使用
kubectl top pods
查看实际资源使用 - 根据监控数据调整请求和限制
- 特别注意构建高峰期的资源使用情况
总结
正确配置actions-runner-controller的资源请求和限制是确保GitHub Actions工作流稳定运行的关键。通过灵活使用模板模式,可以精细控制每个容器的资源分配,避免因资源不足导致的构建失败问题。建议根据实际工作负载特点调整资源配置,并建立持续监控机制。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133