MedicalGPT项目中的大模型增量预训练显存优化问题分析
2025-06-18 10:39:54作者:乔或婵
背景介绍
在MedicalGPT项目中,用户尝试使用8张80GB显存的A800显卡进行Yi-34B-Chat大模型的增量预训练时遇到了显存不足的问题。这个问题在较小模型如chatglm-6B上可以正常运行,但在更大规模的34B参数模型上出现了显存溢出的情况。
问题现象
用户配置了以下关键参数:
- 8张80GB显存的A800显卡
- 批处理大小为2
- 使用DeepSpeed Zero Stage 2优化策略
- 启用了梯度检查点(Gradient Checkpointing)
- 使用bfloat16精度
尽管采取了这些优化措施,系统仍然报告CUDA显存不足的错误,每张显卡仅剩余200-300MB显存,无法完成模型初始化。
技术分析
显存需求计算
34B参数的大模型在训练时显存需求主要来自以下几个方面:
- 模型参数存储:34B参数的FP32模型需要约136GB显存
- 优化器状态:使用Adam优化器时,每个参数需要存储动量和方差,共需约68GB
- 梯度存储:约34GB
- 激活值存储:与批处理大小和序列长度相关
即使使用bfloat16精度和DeepSpeed Zero Stage 2优化,34B模型的显存需求仍然非常巨大。DeepSpeed Zero Stage 2虽然可以优化器状态和梯度进行分片,但每张卡仍需存储完整的模型参数。
实际需求评估
根据项目文档说明,34B模型的训练至少需要600GB显存,这意味着即使用户拥有8张80GB显卡(总计640GB显存),在考虑通信开销和其他系统占用后,显存仍然可能不足。
解决方案建议
- 增加计算资源:按照项目建议,使用更多显卡或更高显存的设备
- 进一步优化配置:
- 降低批处理大小
- 使用更激进的梯度累积
- 尝试DeepSpeed Zero Stage 3,它可以进一步分片模型参数
- 混合精度训练:确保正确配置了bf16/fp16混合精度
- 激活检查点:启用更细粒度的激活检查点策略
经验总结
大模型训练对硬件资源要求极高,在实际部署前需要仔细计算显存需求。MedicalGPT项目中的34B模型训练需要特别注意资源规划,避免因显存不足导致训练失败。对于资源有限的团队,可以考虑从较小模型开始,或使用参数高效微调技术如LoRA等替代全参数训练。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210