PolarSSL项目中关于ECDSA相关宏定义的优化方案
背景介绍
在PolarSSL(现称Mbed TLS)密码学库中,开发者正在逐步优化代码中的宏定义系统,特别是与椭圆曲线数字签名算法(ECDSA)相关的部分。这项工作的核心目标是将传统的MBEDTLS_PK_CAN/HAVE_ECDSA*
系列宏替换为更现代化的PSA_WANT
系列宏定义,以提升代码的一致性和可维护性。
宏定义替换方案
原issue提出了以下宏定义的替换方案:
MBEDTLS_PK_HAVE_ECC_KEYS
→PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY
MBEDTLS_PK_CAN_ECDSA_SIGN
→PSA_WANT_ALG_ECDSA && PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_BASIC
MBEDTLS_PK_CAN_ECDSA_VERIFY
→PSA_WANT_ALG_ECDSA && PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY
MBEDTLS_PK_CAN_ECDSA_SOME
→PSA_WANT_ALG_ECDSA
技术细节优化
在讨论过程中,技术专家指出一个重要细节:ECDSA实际上包含两种算法变体——随机化ECDSA和确定性ECDSA。虽然它们在功能上是等价的,但在PSA(Platform Security Architecture)架构中被视为不同的算法标识。
因此,更准确的替换应该考虑这两种情况:
#define PSA_HAVE_ALG_SOME_ECDSA (PSA_WANT_ALG_ECDSA || PSA_WANT_ALG_DETERMNISTIC_ECDSA)
这个定义应该放在include/psa/*adjust*.h
头文件中,以便在整个项目中统一使用。
实施注意事项
-
替换范围:替换工作应在所有文件中进行,但需要排除以下特殊文件:
mbedtls_config.h
check_config.h
config_adjust_*.h
-
测试保障:在替换过程中,必须确保测试用例的执行方式和结果保持不变,以保证功能的向后兼容性。
-
功能等价性:虽然宏名称改变,但需要确保它们表达的功能语义完全一致,特别是在条件编译中的逻辑行为。
技术意义
这项优化工作具有多重技术价值:
-
代码现代化:将传统的宏定义迁移到PSA架构下的新定义,使代码更加符合现代密码学库的设计规范。
-
功能精确性:通过区分随机化和确定性ECDSA算法,提供了更精确的功能控制能力。
-
可维护性提升:统一的宏定义系统减少了代码中的特殊情况和例外处理,降低了维护成本。
-
架构一致性:与PSA安全架构保持更好的一致性,为未来功能扩展奠定基础。
实施建议
对于开发者而言,实施这项变更时建议:
-
分阶段进行替换,先完成基础宏定义的调整,再处理依赖关系。
-
建立完整的测试验证机制,确保每次修改都不会引入功能回归。
-
在代码审查中特别注意条件编译逻辑的变化,确保功能完整性。
-
更新相关文档,说明新旧宏定义的对应关系和迁移指南。
这项优化工作是PolarSSL/Mbed TLS项目持续演进的一部分,体现了开源密码学库在保持稳定性的同时不断追求代码质量和架构先进性的努力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









