Mitosis项目发布0.5.24版本:增强构建配置与插件能力
Mitosis是一个创新的前端框架,它允许开发者编写一次组件代码,然后编译输出到多个目标框架(如React、Vue、Angular等)。这种"一次编写,多处运行"的理念大大提高了前端开发的效率,特别是在需要维护多框架代码库的场景下。
本次0.5.24版本的发布带来了几个重要的改进,主要集中在构建配置的灵活性和插件系统的增强上。这些改进使得Mitosis在复杂项目中的适应能力更强,同时也为开发者提供了更多自定义构建过程的可能性。
新增显式构建文件扩展名配置
新版本引入了explicitBuildFileExtensions配置项,这是一个非常有用的功能,特别是在处理具有特定命名模式的组件文件时。开发者现在可以在Mitosis配置中指定哪些文件应该保持特定的扩展名。
例如,你可能有一些专门为Figma设计的组件文件(如button.figma.lite.tsx),或者用于文档的组件(如card.docs.lite.tsx)。通过配置:
{
explicitBuildFileExtensions: {
".ts": /*.figma.lite.tsx/g,
".md": /*.docs.lite.tsx/g
}
}
你可以确保这些特殊用途的组件在构建后保持其原始的文件扩展名,这对于后续的自动化处理流程非常有帮助。这个特性特别适合那些需要将Mitosis集成到复杂构建系统中的团队。
增强插件系统能力
Mitosis的插件系统在这个版本中得到了显著增强,主要体现在两个方面:
-
新增构建类型插件:现在插件可以在CLI构建过程的前后执行自定义逻辑。这意味着开发者可以更灵活地控制构建流程,比如在构建前预处理某些文件,或者在构建完成后执行一些后处理操作。
-
组件插件数据:每个Mitosis组件现在都包含一个
pluginData对象,这个对象会在CLI构建过程中被填充。它包含了诸如构建目标、文件路径、输出目录等有用信息,插件可以利用这些信息做出更智能的决策。
pluginData?: {
target?: Target; // 构建目标框架
path?: string; // 文件路径
outputDir?: string; // 输出目录
outputFilePath?: string; // 输出文件路径
};
这些改进使得Mitosis插件能够更好地理解和操作构建上下文,为开发更强大的构建时工具奠定了基础。
修复状态变量在key属性中的问题
这个版本还修复了一个关于在Fragment的key属性中使用状态变量的问题。在之前的版本中,类似这样的代码:
<Fragment key={state.xxx + "abc"}...>
在React和Angular中的处理方式不一致:React会正确识别state.xxx,而Angular会缺少必要的this.前缀。这个修复确保了跨框架行为的一致性,减少了开发者在不同目标框架间切换时的困惑。
总结
Mitosis 0.5.24版本的这些改进,特别是构建配置和插件系统的增强,使得这个工具在复杂项目中的应用更加得心应手。显式文件扩展名配置解决了特殊命名文件的处理问题,插件系统的增强为构建流程的定制化打开了更多可能性,而框架间一致性的修复则进一步提升了开发体验。
这些变化体现了Mitosis项目对开发者实际需求的关注,也展示了它作为一个跨框架组件解决方案的成熟度正在不断提高。对于正在使用或考虑使用Mitosis的团队来说,这个版本值得关注和升级。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00