PySimpleGUI中使用Matplotlib实现动态CPU监控图表
2025-05-16 20:49:44作者:谭伦延
概述
本文将介绍如何在PySimpleGUI应用中集成Matplotlib图表,实现一个动态更新的CPU使用率监控界面。我们将探讨如何解决时间轴显示问题、图表刷新机制以及界面布局优化等关键技术点。
核心问题分析
在开发监控类应用时,经常需要展示时间序列数据。当数据点密集时,X轴(时间轴)标签容易重叠,导致可读性差。此外,动态更新图表时还需要考虑性能优化和界面稳定性。
解决方案
1. Matplotlib时间轴优化
使用Matplotlib的mdates模块可以很好地处理时间序列数据的显示问题:
import matplotlib.dates as mdates
def create_plot(time, cpu):
fig = Figure()
ax = fig.add_subplot(111)
ax.plot(time, cpu, color='red')
# 设置时间轴格式
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate() # 自动旋转日期标签
ax.set_xlabel('时间')
ax.set_ylabel('CPU使用率(%)')
ax.grid(True)
ax.set_ylim(0, 100) # 固定Y轴范围
return fig
2. 图表刷新机制
在PySimpleGUI中实现图表动态更新时,需要正确处理旧图表的清理:
def draw_figure(canvas, figure):
# 检查并清理旧图表
if hasattr(canvas, 'figure_canvas_agg'):
canvas.figure_canvas_agg.get_tk_widget().destroy()
# 创建新图表
figure_canvas_agg = FigureCanvasTkAgg(figure, canvas)
figure_canvas_agg.draw()
figure_canvas_agg.get_tk_widget().pack(side='left', expand=True)
# 保存引用以便下次清理
canvas.figure_canvas_agg = figure_canvas_agg
return figure_canvas_agg
3. 完整界面实现
结合PySimpleGUI的布局系统,我们可以构建一个完整的监控界面:
import PySimpleGUI as sg
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
# 初始化界面
layout = [
[sg.Text('处理器监控')],
[sg.Frame("CPU使用率",
[[sg.Canvas(key='-CPUchart-', expand_x=True, expand_y=True)]],
size=(500,500))],
[sg.Button('刷新', key='-REFRESH-')]
]
window = sg.Window('处理器监控', layout, finalize=True)
# 初始绘图
time, cpu = get_cpu_data() # 获取数据的函数
draw_figure(window['-CPUchart-'].TKCanvas, create_plot(time, cpu))
# 事件循环
while True:
event, values = window.read()
if event == '-REFRESH-':
time, cpu = get_cpu_data()
draw_figure(window['-CPUchart-'].TKCanvas, create_plot(time, cpu))
if event == sg.WIN_CLOSED:
break
window.close()
性能优化建议
- 数据采样:对于长时间监控,考虑对历史数据进行降采样,只保留关键点
- 双缓冲技术:使用
plt.pause(0.01)可以实现更平滑的动画效果 - 异步更新:对于实时性要求高的场景,考虑使用线程或异步IO来更新数据
替代方案
PySimpleGUI自带的Graph元素也可以实现简单的图表功能,对于不需要复杂样式的场景,这是更轻量级的解决方案:
graph = sg.Graph(canvas_size=(400, 400),
graph_bottom_left=(0,0),
graph_top_right=(100,100),
key='-GRAPH-')
总结
在PySimpleGUI中集成Matplotlib图表需要特别注意时间轴的显示优化和图表刷新机制。通过合理使用Matplotlib的日期格式化功能和PySimpleGUI的Canvas元素,可以构建出功能强大且美观的监控界面。对于性能要求高的场景,可以考虑简化图表复杂度或使用PySimpleGUI原生绘图功能作为替代方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695