PySimpleGUI中使用Matplotlib实现动态CPU监控图表
2025-05-16 21:33:31作者:谭伦延
概述
本文将介绍如何在PySimpleGUI应用中集成Matplotlib图表,实现一个动态更新的CPU使用率监控界面。我们将探讨如何解决时间轴显示问题、图表刷新机制以及界面布局优化等关键技术点。
核心问题分析
在开发监控类应用时,经常需要展示时间序列数据。当数据点密集时,X轴(时间轴)标签容易重叠,导致可读性差。此外,动态更新图表时还需要考虑性能优化和界面稳定性。
解决方案
1. Matplotlib时间轴优化
使用Matplotlib的mdates模块可以很好地处理时间序列数据的显示问题:
import matplotlib.dates as mdates
def create_plot(time, cpu):
fig = Figure()
ax = fig.add_subplot(111)
ax.plot(time, cpu, color='red')
# 设置时间轴格式
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate() # 自动旋转日期标签
ax.set_xlabel('时间')
ax.set_ylabel('CPU使用率(%)')
ax.grid(True)
ax.set_ylim(0, 100) # 固定Y轴范围
return fig
2. 图表刷新机制
在PySimpleGUI中实现图表动态更新时,需要正确处理旧图表的清理:
def draw_figure(canvas, figure):
# 检查并清理旧图表
if hasattr(canvas, 'figure_canvas_agg'):
canvas.figure_canvas_agg.get_tk_widget().destroy()
# 创建新图表
figure_canvas_agg = FigureCanvasTkAgg(figure, canvas)
figure_canvas_agg.draw()
figure_canvas_agg.get_tk_widget().pack(side='left', expand=True)
# 保存引用以便下次清理
canvas.figure_canvas_agg = figure_canvas_agg
return figure_canvas_agg
3. 完整界面实现
结合PySimpleGUI的布局系统,我们可以构建一个完整的监控界面:
import PySimpleGUI as sg
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
# 初始化界面
layout = [
[sg.Text('处理器监控')],
[sg.Frame("CPU使用率",
[[sg.Canvas(key='-CPUchart-', expand_x=True, expand_y=True)]],
size=(500,500))],
[sg.Button('刷新', key='-REFRESH-')]
]
window = sg.Window('处理器监控', layout, finalize=True)
# 初始绘图
time, cpu = get_cpu_data() # 获取数据的函数
draw_figure(window['-CPUchart-'].TKCanvas, create_plot(time, cpu))
# 事件循环
while True:
event, values = window.read()
if event == '-REFRESH-':
time, cpu = get_cpu_data()
draw_figure(window['-CPUchart-'].TKCanvas, create_plot(time, cpu))
if event == sg.WIN_CLOSED:
break
window.close()
性能优化建议
- 数据采样:对于长时间监控,考虑对历史数据进行降采样,只保留关键点
- 双缓冲技术:使用
plt.pause(0.01)可以实现更平滑的动画效果 - 异步更新:对于实时性要求高的场景,考虑使用线程或异步IO来更新数据
替代方案
PySimpleGUI自带的Graph元素也可以实现简单的图表功能,对于不需要复杂样式的场景,这是更轻量级的解决方案:
graph = sg.Graph(canvas_size=(400, 400),
graph_bottom_left=(0,0),
graph_top_right=(100,100),
key='-GRAPH-')
总结
在PySimpleGUI中集成Matplotlib图表需要特别注意时间轴的显示优化和图表刷新机制。通过合理使用Matplotlib的日期格式化功能和PySimpleGUI的Canvas元素,可以构建出功能强大且美观的监控界面。对于性能要求高的场景,可以考虑简化图表复杂度或使用PySimpleGUI原生绘图功能作为替代方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868