AIMET量化工具在经典CNN模型上的精度表现分析
2025-07-02 22:37:49作者:宗隆裙
引言
在模型量化领域,AIMET是一个广受关注的工具包。本文通过实验分析了AIMET在不同精度下对MobileNetV2、ResNet18、ResNet101和ShuffleNetV2等经典CNN模型的量化效果,特别关注了8位量化(W8A8)和4位量化(W4A8)的表现差异。
实验设置
实验使用ImageNet 1K验证集作为基础数据集,将其划分为三个互不重叠的子集:
- 评估集:47,872-29,696个样本
- 校准集:1,024个样本
- Adaround优化集:1,024个样本
批处理大小根据模型不同设置为128或1024。所有实验均未使用其他AIMET精度提升工具(如PTQ或QAT),仅评估基础量化效果。
量化精度表现
MobileNetV2与ResNet18的基础量化
实验结果显示,这两个模型在W8A8量化下表现优异:
- MobileNetV2:FP32精度71.67%,W8A8精度71.32%,仅下降0.35%
- ResNet18:FP32精度69.44%,W8A8精度69.25%,仅下降0.19%
当量化到W4A8时,精度出现显著下降:
- MobileNetV2降至3.54%
- ResNet18降至49.52%
ResNet101与ShuffleNetV2的Adaround效果
Adaround是一种高级量化技术,实验显示其对不同量化精度的改善效果差异明显:
ResNet101
- W8A8:Adaround仅带来0.16%的提升
- W4A8:Adaround带来2.07%的显著提升
- W4A4:效果不明显
ShuffleNetV2
- W8A8:Adaround提升0.24%
- W4A8:Adaround带来惊人的57.4%提升
- W4A4:效果不明显
技术分析
-
模型量化鲁棒性:ResNet系列和MobileNetV2在W8A8量化下表现优异,说明这些架构对8位量化具有天然鲁棒性。这可能源于它们的残差连接和深度可分离卷积等设计。
-
4位量化挑战:W4A8精度大幅下降表明4位量化需要更精细的处理。Adaround在W4A8上的显著效果说明它对极低位宽量化特别有效。
-
模型选择建议:对于希望体验AIMET量化优势的研究者,建议尝试MnasNet等模型,这些模型在W8A8量化下也能从Adaround获得明显提升。
最佳实践建议
- 对于W8A8量化,许多现代CNN模型可能不需要额外优化即可获得良好效果
- 当进行W4A8或更低精度量化时,Adaround等高级技术能带来显著改善
- 校准集和优化集规模保持在1000个样本左右即可,重要的是数据代表性而非数量
- 不同模型对量化的敏感性差异很大,建议在实际应用前进行全面评估
结论
AIMET量化工具在不同模型和不同精度下表现各异。虽然许多现代CNN模型在W8A8量化下表现良好,但在极低位宽(W4A8)场景下,Adaround等高级量化技术能带来显著改善。研究者应根据具体模型和量化需求选择合适的工具和技术路线。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
659
150
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
657
293
仓颉编译器源码及 cjdb 调试工具。
C++
131
865
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874