AIMET量化工具在经典CNN模型上的精度表现分析
2025-07-02 22:37:49作者:宗隆裙
引言
在模型量化领域,AIMET是一个广受关注的工具包。本文通过实验分析了AIMET在不同精度下对MobileNetV2、ResNet18、ResNet101和ShuffleNetV2等经典CNN模型的量化效果,特别关注了8位量化(W8A8)和4位量化(W4A8)的表现差异。
实验设置
实验使用ImageNet 1K验证集作为基础数据集,将其划分为三个互不重叠的子集:
- 评估集:47,872-29,696个样本
- 校准集:1,024个样本
- Adaround优化集:1,024个样本
批处理大小根据模型不同设置为128或1024。所有实验均未使用其他AIMET精度提升工具(如PTQ或QAT),仅评估基础量化效果。
量化精度表现
MobileNetV2与ResNet18的基础量化
实验结果显示,这两个模型在W8A8量化下表现优异:
- MobileNetV2:FP32精度71.67%,W8A8精度71.32%,仅下降0.35%
- ResNet18:FP32精度69.44%,W8A8精度69.25%,仅下降0.19%
当量化到W4A8时,精度出现显著下降:
- MobileNetV2降至3.54%
- ResNet18降至49.52%
ResNet101与ShuffleNetV2的Adaround效果
Adaround是一种高级量化技术,实验显示其对不同量化精度的改善效果差异明显:
ResNet101
- W8A8:Adaround仅带来0.16%的提升
- W4A8:Adaround带来2.07%的显著提升
- W4A4:效果不明显
ShuffleNetV2
- W8A8:Adaround提升0.24%
- W4A8:Adaround带来惊人的57.4%提升
- W4A4:效果不明显
技术分析
-
模型量化鲁棒性:ResNet系列和MobileNetV2在W8A8量化下表现优异,说明这些架构对8位量化具有天然鲁棒性。这可能源于它们的残差连接和深度可分离卷积等设计。
-
4位量化挑战:W4A8精度大幅下降表明4位量化需要更精细的处理。Adaround在W4A8上的显著效果说明它对极低位宽量化特别有效。
-
模型选择建议:对于希望体验AIMET量化优势的研究者,建议尝试MnasNet等模型,这些模型在W8A8量化下也能从Adaround获得明显提升。
最佳实践建议
- 对于W8A8量化,许多现代CNN模型可能不需要额外优化即可获得良好效果
- 当进行W4A8或更低精度量化时,Adaround等高级技术能带来显著改善
- 校准集和优化集规模保持在1000个样本左右即可,重要的是数据代表性而非数量
- 不同模型对量化的敏感性差异很大,建议在实际应用前进行全面评估
结论
AIMET量化工具在不同模型和不同精度下表现各异。虽然许多现代CNN模型在W8A8量化下表现良好,但在极低位宽(W4A8)场景下,Adaround等高级量化技术能带来显著改善。研究者应根据具体模型和量化需求选择合适的工具和技术路线。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869