DI-engine中TD3算法处理混合动作空间的注意事项
在强化学习框架DI-engine中,使用TD3算法处理混合动作空间时,开发者可能会遇到一个常见问题:AssertionError断言错误,提示action不是torch.Tensor类型。这个问题源于TD3算法的目标策略平滑特性与混合动作空间的不兼容性。
混合动作空间是指同时包含连续和离散动作的环境空间,这在许多实际应用中非常常见。DI-engine通过HybridArgmaxSampleWrapper来支持这种特殊动作空间的处理。然而,当与TD3算法结合使用时,需要注意几个关键点:
-
配置参数设置:必须在TD3Policy中显式指定action_space='hybrid'参数,以告知算法当前处理的是混合动作空间而非标准连续动作空间。
-
目标策略平滑问题:TD3算法默认会使用目标策略平滑技术,这是其核心特性之一。但在混合动作空间下,这种噪声添加机制与动作空间包装器不兼容,会导致类型检查失败。
-
解决方案:最简单的解决方法是参考DDPG算法在混合动作空间中的配置方式,在策略配置中将noise参数设为False,禁用目标策略平滑功能。虽然这会改变TD3算法的原始设计,但在混合动作空间场景下是必要的妥协。
对于开发者来说,理解算法实现细节与环境特性之间的这种微妙关系非常重要。混合动作空间的支持往往需要在标准算法基础上做出适当调整,这也是为什么DI-engine提供了灵活的配置选项。
在实际应用中,如果确实需要保持TD3的完整特性,可能需要考虑其他解决方案,如自定义动作空间处理逻辑或修改噪声添加机制。但对于大多数情况,禁用目标策略平滑已经能够提供良好的性能表现。
这个案例也提醒我们,在选择强化学习算法时,不仅要考虑算法的理论优势,还需要考虑其与特定环境特性的兼容性。DI-engine通过清晰的错误提示和灵活的配置选项,帮助开发者快速识别和解决这类问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00