DI-engine中混合动作空间DDPG算法的探索机制解析
在深度强化学习领域,处理混合动作空间(Hybrid Action Space)是一个具有挑战性的问题。混合动作空间通常包含离散动作和连续动作的组合,需要特殊的算法设计。DI-engine项目中的混合DDPG(Deep Deterministic Policy Gradient)算法实现提供了一种有效的解决方案,特别是在探索机制方面采用了创新性的设计。
混合动作空间的挑战
混合动作空间由两部分组成:
- 离散动作部分:通常表示为有限的动作集合
- 连续动作部分:通常表示为实数空间中的向量
这种组合在机器人控制、游戏AI等场景中十分常见。传统DDPG算法设计用于连续动作空间,直接应用于混合动作空间会面临探索效率低下的问题。
DI-engine的创新探索机制
DI-engine在实现混合DDPG时,针对收集(collect)和学习(learn)两个阶段设计了不同的探索策略:
收集阶段的探索策略
在数据收集阶段,系统采用了改进版的ε-greedy策略,称为"eps_greedy_multinomial"。这种策略的工作机制如下:
- 以概率ε随机均匀选择一个离散动作
- 以概率1-ε根据当前策略的概率分布(通过logits表示)使用多项式采样选择动作
这种设计相比传统ε-greedy有以下优势:
- 保留了随机探索的可能性(通过ε参数控制)
- 在利用当前策略时,不是简单地选择最大logit对应的动作,而是基于概率分布采样
- 提高了探索效率,能够更全面地覆盖动作空间
学习阶段的策略优化
在学习阶段,系统使用了"hybrid_argmax_sample"策略。这种策略的核心是:
- 对离散动作部分采用argmax操作,选择Q值最大的动作
- 对连续动作部分直接输出策略网络的预测值
这种设计符合强化学习的理论要求,特别是在计算TD-target时,需要基于最优动作(argmax Q(s',a'))来更新Q函数。
技术实现细节
在具体实现上,DI-engine通过模型包装器(Model Wrapper)机制来灵活切换这两种策略:
- 收集模型使用探索导向的包装器
- 学习模型使用优化导向的包装器
这种分离设计确保了:
- 训练稳定性:学习过程基于确定性策略
- 探索充分性:数据收集过程包含充分探索
实际应用价值
这种混合探索机制在实际应用中表现出色,特别是在需要同时处理离散和连续决策的场景中,例如:
- 机器人控制中的模式切换和参数调整
- 游戏AI中的技能选择和精确操作
- 工业自动化中的工序选择和参数优化
通过DI-engine的这种实现,开发者可以更方便地处理复杂的混合动作空间问题,同时保证算法的探索效率和收敛性能。
总结
DI-engine项目中的混合DDPG实现通过精心设计的探索机制,有效解决了混合动作空间下的强化学习问题。其核心创新在于区分收集和学习阶段的策略,既保证了充分探索,又确保了稳定学习。这种设计思路为处理复杂动作空间问题提供了有价值的参考。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









