gSpan:高效挖掘频繁子图的Python实现
2024-09-17 22:05:09作者:何将鹤
项目介绍
gSpan 是一个用于挖掘频繁子图的算法,广泛应用于数据挖掘和图分析领域。本项目提供了一个用Python实现的gSpan算法,支持无向图和有向图的频繁子图挖掘。项目源码托管在GitHub上,地址为:https://github.com/betterenvi/gSpan。
项目技术分析
算法核心
gSpan算法的核心思想是通过深度优先搜索(DFS)来枚举所有可能的子图,并通过支持度(support)来筛选出频繁子图。该算法在处理大规模图数据时表现出色,能够高效地挖掘出具有统计意义的子图结构。
技术栈
- 编程语言:Python 2 和 Python 3
- 依赖库:matplotlib、networkx(用于可视化)
- 数据结构:图(Graph)、子图(Subgraph)、DFS编码(DFS Code)
实现细节
- 无向图支持:本项目实现了对无向图的gSpan算法,并在多个数据集上进行了验证,结果与gboost一致。
- 有向图支持:本项目还扩展了gSpan算法,支持有向图的频繁子图挖掘。尽管作者未进行充分的测试,但在多个数据集上运行结果无误。
项目及技术应用场景
应用场景
- 社交网络分析:通过挖掘频繁子图,可以识别社交网络中的社区结构和关键节点。
- 生物信息学:在蛋白质相互作用网络中,频繁子图可以用于识别功能模块和预测蛋白质功能。
- 网络安全:通过分析网络流量图,可以检测异常行为和潜在的攻击模式。
技术优势
- 高效性:gSpan算法在处理大规模图数据时表现出色,能够快速挖掘出频繁子图。
- 灵活性:支持无向图和有向图的挖掘,适用于多种应用场景。
- 易用性:提供命令行接口和Jupyter Notebook示例,方便用户快速上手。
项目特点
特点一:跨平台支持
本项目支持Python 2和Python 3,用户可以根据自己的环境选择合适的版本进行安装和使用。
特点二:丰富的功能选项
- 支持度设置:用户可以通过
-s
参数设置最小支持度,筛选出符合条件的频繁子图。 - 图类型选择:通过
-d
参数,用户可以选择挖掘无向图或有向图的频繁子图。 - 可视化功能:通过
-p
参数,用户可以生成频繁子图的可视化结果,便于直观理解。
特点三:详细的文档和示例
项目提供了详细的README文档和Jupyter Notebook示例,帮助用户快速了解和使用gSpan算法。示例代码中包含了数据加载、子图挖掘和结果可视化的完整流程,适合初学者参考。
结语
gSpan算法在图数据挖掘领域具有广泛的应用前景,本项目的Python实现为开发者提供了一个高效、易用的工具。无论你是数据科学家、网络安全专家还是生物信息学研究人员,gSpan都能帮助你从复杂的图数据中挖掘出有价值的信息。快来尝试吧!
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0