gSpan:高效挖掘频繁子图的Python实现
2024-09-17 21:17:38作者:何将鹤
项目介绍
gSpan 是一个用于挖掘频繁子图的算法,广泛应用于数据挖掘和图分析领域。本项目提供了一个用Python实现的gSpan算法,支持无向图和有向图的频繁子图挖掘。项目源码托管在GitHub上,地址为:https://github.com/betterenvi/gSpan。
项目技术分析
算法核心
gSpan算法的核心思想是通过深度优先搜索(DFS)来枚举所有可能的子图,并通过支持度(support)来筛选出频繁子图。该算法在处理大规模图数据时表现出色,能够高效地挖掘出具有统计意义的子图结构。
技术栈
- 编程语言:Python 2 和 Python 3
- 依赖库:matplotlib、networkx(用于可视化)
- 数据结构:图(Graph)、子图(Subgraph)、DFS编码(DFS Code)
实现细节
- 无向图支持:本项目实现了对无向图的gSpan算法,并在多个数据集上进行了验证,结果与gboost一致。
- 有向图支持:本项目还扩展了gSpan算法,支持有向图的频繁子图挖掘。尽管作者未进行充分的测试,但在多个数据集上运行结果无误。
项目及技术应用场景
应用场景
- 社交网络分析:通过挖掘频繁子图,可以识别社交网络中的社区结构和关键节点。
- 生物信息学:在蛋白质相互作用网络中,频繁子图可以用于识别功能模块和预测蛋白质功能。
- 网络安全:通过分析网络流量图,可以检测异常行为和潜在的攻击模式。
技术优势
- 高效性:gSpan算法在处理大规模图数据时表现出色,能够快速挖掘出频繁子图。
- 灵活性:支持无向图和有向图的挖掘,适用于多种应用场景。
- 易用性:提供命令行接口和Jupyter Notebook示例,方便用户快速上手。
项目特点
特点一:跨平台支持
本项目支持Python 2和Python 3,用户可以根据自己的环境选择合适的版本进行安装和使用。
特点二:丰富的功能选项
- 支持度设置:用户可以通过
-s参数设置最小支持度,筛选出符合条件的频繁子图。 - 图类型选择:通过
-d参数,用户可以选择挖掘无向图或有向图的频繁子图。 - 可视化功能:通过
-p参数,用户可以生成频繁子图的可视化结果,便于直观理解。
特点三:详细的文档和示例
项目提供了详细的README文档和Jupyter Notebook示例,帮助用户快速了解和使用gSpan算法。示例代码中包含了数据加载、子图挖掘和结果可视化的完整流程,适合初学者参考。
结语
gSpan算法在图数据挖掘领域具有广泛的应用前景,本项目的Python实现为开发者提供了一个高效、易用的工具。无论你是数据科学家、网络安全专家还是生物信息学研究人员,gSpan都能帮助你从复杂的图数据中挖掘出有价值的信息。快来尝试吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868