gSpan 项目使用教程
2024-09-17 03:43:23作者:咎岭娴Homer
1. 项目目录结构及介绍
gSpan 项目的目录结构如下:
gSpan/
├── data/
│ ├── example_data.txt
│ └── README.md
├── src/
│ ├── gSpan.py
│ ├── utils.py
│ └── README.md
├── config/
│ ├── config.yaml
│ └── README.md
├── tests/
│ ├── test_gSpan.py
│ └── README.md
├── README.md
├── LICENSE
└── requirements.txt
目录介绍
- data/: 存放示例数据文件,例如
example_data.txt,用于测试和演示 gSpan 的功能。 - src/: 包含项目的核心代码,其中
gSpan.py是主要的算法实现文件,utils.py包含一些辅助函数。 - config/: 存放项目的配置文件,例如
config.yaml,用于配置算法参数。 - tests/: 包含项目的测试代码,例如
test_gSpan.py,用于确保代码的正确性。 - README.md: 项目的介绍文件,包含项目的基本信息、安装步骤和使用说明。
- LICENSE: 项目的开源许可证文件。
- requirements.txt: 列出了项目依赖的 Python 包。
2. 项目启动文件介绍
项目的启动文件是 src/gSpan.py。这个文件包含了 gSpan 算法的主要实现。通过运行这个文件,可以启动 gSpan 算法并处理输入数据。
启动方式
python src/gSpan.py
主要功能
- 数据加载: 从指定路径加载数据文件。
- 算法执行: 执行 gSpan 频繁子图挖掘算法。
- 结果输出: 将挖掘到的频繁子图输出到指定文件或标准输出。
3. 项目配置文件介绍
项目的配置文件位于 config/config.yaml。这个文件用于配置 gSpan 算法运行时的参数。
配置文件内容
# 数据文件路径
data_file: "data/example_data.txt"
# 输出文件路径
output_file: "output/frequent_subgraphs.txt"
# 最小支持度阈值
min_support: 0.5
# 其他参数
max_edges: 10
配置项说明
- data_file: 指定输入数据文件的路径。
- output_file: 指定输出文件的路径,用于存储挖掘到的频繁子图。
- min_support: 设置最小支持度阈值,用于筛选频繁子图。
- max_edges: 设置最大边数,限制挖掘的子图大小。
通过修改 config.yaml 文件中的参数,可以灵活调整 gSpan 算法的运行行为。
总结
本教程介绍了 gSpan 项目的目录结构、启动文件和配置文件。通过了解这些内容,您可以更好地理解和使用 gSpan 项目进行频繁子图挖掘。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
410
3.16 K
Ascend Extension for PyTorch
Python
227
254
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
264
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868