OpenCompass评测工具中VLLM模型配置的正确使用方式
2025-06-08 16:11:14作者:翟江哲Frasier
在大型语言模型评测过程中,OpenCompass是一个广泛使用的评测框架。最近有用户反馈在使用OpenCompass进行VLLM模型评测时遇到了性能问题,经过分析发现这实际上是一个模型配置错误导致的典型问题。
问题现象分析
用户在使用OpenCompass评测Llama-7B模型时,发现以下异常现象:
- GPU利用率显著低于预期,远未达到100%的理想状态
- 推理速度明显慢于正常VLLM推理
- 间歇性出现GPU内存不足的错误
这些现象让用户怀疑OpenCompass的VLLM接口实现可能存在严重缺陷,包括内存释放不及时等问题。
根本原因定位
经过技术分析,发现问题并非出在OpenCompass框架本身,而是用户错误地使用了HuggingFaceBaseModel而非VLLM专用模型类。具体表现为:
- 配置文件中使用的是HuggingFaceBaseModel而非VLLM模型类
- 虽然命令行添加了"-a vllm"参数,但这并不能改变模型类的选择
- 导致实际运行仍使用HuggingFace接口而非优化的VLLM后端
正确配置方法
要在OpenCompass中正确使用VLLM进行评测,需要:
- 在配置文件中明确使用VLLM模型类
- 配置VLLM特有的参数如tensor并行度等
- 确保模型路径与VLLM兼容
以下是正确的VLLM配置示例:
from opencompass.models import VLLM
models = [
dict(
type=VLLM,
path='llama-7B',
tokenizer_path='llama-7B',
max_seq_len=2048,
tensor_parallel_size=2, # 根据GPU数量设置
# 其他VLLM特有参数
)
]
性能优化建议
对于希望获得最佳评测性能的用户,建议:
- 根据GPU数量合理设置tensor_parallel_size
- 调整batch_size参数以充分利用GPU内存
- 考虑使用VLLM的连续批处理(continuous batching)特性
- 监控GPU利用率,确保达到理想水平
总结
OpenCompass框架本身支持高效的VLLM评测,但需要正确配置模型类。用户遇到的性能问题源于使用了不匹配的模型接口而非框架缺陷。通过正确使用VLLM模型类,可以充分发挥VLLM的高性能特性,获得理想的评测效率。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
238
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55